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1. Introduction

The staggered Dirac operator,
1 .
Ds= 2 > Nu(Vu =V, with: (Vu)ey =Up()8xa and ny(x) = (—1)Zv, (1.1)
[T

is the most computationally efficient way to discretize thieb operator, and is commonly used in
large-scale lattice QCD simulations. Yet, it leads to 4 degate quark “tastes” in the continuum
limit, and the determinant is raised to the pow&r/4 in N;-flavor simulations. The systematic
error associated with this “rooting” is a subject of hot deb#n the literature, two different types of
staggered-like operators which avoid rooting by représgranly two tastes have been proposed:
i) minimally doubled staggered fermions [3, 4], which repreésetastes with minimal fine-tuning;
i) staggered overlap fermions [1, 2], where the degenerackieo§pectrum is lifted by a taste-
dependent mass term, and the resulting operator is used &sritel in Neuberger’s overlap [6].

Here we study the numerical properties(df. In spite of the additional complexity of the
overlap, it may be simpler than the multiple fine-tuning rieegh in (i) [5]. Note also that the
overlap kernel enteringji ) can also be used without overlap, at the expense of fineguliife first
motivate the overlap kernel devised in [1] and study its togical properties, then consider the
staggered overlap operator of [2].

2. Index of overlap kernel

The index of a gauge field configuration is obtained from thev ftd the eigenvalues of
H(m) = y(ID + m) as a function oim. To probe the topological properties of the gluon field, it
is essential that the varying temmys be a taste singlet. This is not the case for staggered fegnion
if one makes fors the customary choicg — £(x,y) = (—1)2+* &y, which has the decomposi-
tion € = B ® ¥ in spin ® taste space. Instead, Adams proposes to teaie I's = nsC, where
C= 2 Yii—perm1234 GC{CCi, Cu = 3 (Vi + V), is the symmetrized sum of 4-link parallel trans-
porters connecting a site to its opposite in an elementapeiftybe, andjs(x,y) = ﬂﬁ:mu =
(—1)yat*eg, is the corresponding product of 4 phase factdrshas the spi® taste decomposi-
tion y5 ® 1: it is a taste singlet, which allowsI 5 to probe the topology of the gauge field.

In Figs. 1, we compare the flow of eigenvalues witlior Adams’ operator

Ha(m) = ePs+mls (2.1)

and for Neuberger’s operatdty (m) = y5(Pw + m) (wherePs and Dy are the zero bare mass
staggered and Wilson Dirac operators, respectively), esdmeSU(3) gauge field configurations.
The top pair of figures corresponds to the free case (the kodid are analytic results). In the
second set of figures, the gauge field is that of a smooth, doostanton. The eigenvalue flow
shows one crossing in Neuberger’s case, two nearly degeng@ssings in Adams’ case, reflect-
ing the corresponding number of flavors. The third pair of iégucorresponds to a thermalized
configuration 3 = 6 with Wilson gauge action). While the pattern of eigenvdloe is less clear
for both operators, it is remarkable that the eigenvalue igafgddams’ case seems to persist for
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Figure 1: Flow of eigenvaluess. mfor Adams’ operator (left) and Neuberger's operator (fjght

arbitrarily large values ofim| 1, while in Neuberger's case additional eigenvalue crossagpear
at negative values ah (corresponding to theories with a larger number of flavask)fted from
their free-field values by gauge field fluctuations.

3. Adams’ staggered overlap operator

Having constructed a Hermitian kerridh(m) = €[ds+ ml 5 sensitive to the topology of the
gauge field, one can plug this kernel into Neuberger's operla,, = 1+ ¥ sign(H(—mp)) =
1+D/vD'D, whereD = yH andD' = yDys. Thus, Adams’ staggered overlap operator is

Dsov= 1+ £ Sign(Ha(—Mp)) = 1+ Da/\/DDa, (3.1)

with Da = eHa(—mo) = s — mpels. Note that the mass termmpel 5 has the spire taste decom-
position1® y: it is “flavored”. If one considers low-momentum eigenssatéof s, satisfying

lin Adams’ case, eigenvalues come in paifsn) — —A (—m), becaus&Ha(m)e = —Ha(—m).
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Figure 2: Spectrum of the free Wilson operator (blue) and of the frearAsl operator (green).
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Figure 3: Maximum magnitude mgfDov(X,y)| of the Dirac operator matrix elements versus Manhattan
distancex —y|, for Adams’ operator (left) and for Wilson’s operator (rth

Ds¥ ~ 0, they will obey(¥T(eI'5)®) ~ +1 depending on their taste content. Of the initial 4 tastes,
two combinations will givet-1 and become physical, light modes of the overlap operdterpther
two combinations will give-1 and become heavy doublers.

This is clear in the free case: Fig. 2 shows the spectruBwaind of the Wilson operatddy,
for my =1 and a free field. The splitting of the 4 tastes into 2 pairgiseved in a symmetric way,
more elegant than the reduction from 16 flavors to 1 in the dMilsase. Moreover, since Adams’
kernel has a spectrum already much closer to the unit cinele ¥Vilson’s operator, one may expect
a smaller number of operations to achieve the unitary pﬂoje@/\/ﬁ of the kernel operator
D in Adams’ case than in Neuberger’s case. This is investigat&ec. 5.

4. Locality

First, we compare the locality of Adams’ overlap operatothvihat of Neuberger’s. In both
cases, the matrix elemerig,(x,y) are non-zero for arbitrarily distant sitgandy, as the overlap
operator is not ultra-local. What matters, however, is therélase in magnitude @, (X,y)| with
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Figure 4. Computer cost of one overlap propagator, measured in o@eitéZations (left), matrix-vector
multiplications (middle) and CPU time (right). The values Adams’ operator are shown in red, those for
Neuberger's operator in green. The gauge field is the free fiep), or a8 = 6.0 configuration (bottom).

the distancéx—y|, which should be bounded by exp|x —y|/(ca)), where(ca) is a localization
length proportional to the lattice spaciagand thus shrinking to zero in the continuum limit.

Fig. 3 shows the maximum magnitude Moy (Xo,Y)| versus the Manhattan distarjeg—y|,
chosen to follow the conventions of Ref. [7] for the Neubegmerator. The left figure corresponds
to Adams’ overlap operator, the right one to Neuberger'sthensame gauge configurations at 3
values of3. While Adams’ operator behaves differently at short distabecause of the 4-link

transporters, at large distances the decay of the matnweglts is exponential as in Neuberger’s
case, with a similar localization IengtFl.

5. Robustness to gauge fluctuations and efficiency

We have studied the computational cost of a quark propagaloulation with Adams’ op-
erator and compared it to Neuberger’'s propagator (for omepoment) on the same gauge field
background, and with the same numerical approach. As thext@ainvert is 4 times smaller, and
its spectrum is closer to the unit circle, at least in the frage (Fig. 2), Adams’ operator may be
computationally cheaper.

The propagator is obtained as the solution(Bf, + m)T(Doy + M)x = (Doy+m)'b, using a
conjugate gradient iterative solver, using the followinig@e and robust method [9]: at each
iteration of this outer CG, sigi) is applied to a vectov through a Lanczos process, building a

2This happens even though the kernel of Adams’ operator ishniess local than that of Neuberger's: a less
ultralocal kernel may lead to a more local overlap operapr [

12000
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Figure 5: Spectra of Adams’ operator. Left to right: free fietl= 6.0, 8 = 6.0 with largerp, 8 = 5.8.

tridiagonal matrix. Its eigenvalues are representativiho$e ofH, and we replace them by their
sign. The results are presented in Fig. 4, for a free field) @od a8 = 6 configuration (bottom).
The 3 figures in each row show the relative norm of the resjduglro|, vs. outer CG iterations
(left), number of matrix-vector multiplications (middlahd CPU time (right).

In the free field case, the CPU time to find the solution for Adapperator is almost an order
of magnitude smaller than for Neuberger’s, thanks to a coasbn of the sign function requiring
fewer matrix-vector multiplications, each with a smalldP\C cost. The inversion of the unitary
operator converges at the same rate, reflecting the sinpitatial properties in the infrared.

The situation changes ora= 6 configuration. The outer CG now converges noticeably faste
in Neuberger’s case (left). This advantage is offset by thet of the sign function, which still is
cheaper in Adams’ case (middle). Finally, the CPU time perisraector multiplication is a factor
0 (2) smaller in Adams’ case (Adam’s matrix is one quarter the sfadeuberger’s, with each site
connected to (8+16) neighbours, instead of 8 with 2 Diracmaments). In total, the CPU time to
find the solution is only7(2) times smaller in Adams’ case.

This loss of efficiency can be traced to changes in the spaatfuAdams’ kernelD4 in the
presence of gauge field fluctuations, as illustrated in FigV#hile the free spectrum (left) is
remarkably close to the unit circle, it is quite differentBat 6 (2nd panel). The splitting of the 4
tastes into 2 pairs is markedly reduced. The reason is thaathe-dependence of the mass operator
el5 is achieved via 4-link transporters: fluctuations in theggalinks are raised to the 4th power.
It is the same reason for which the chirali§/'T'sW) of near-zero modes of the ordinary staggered
operator is so small [10]. Here, one may attempt to restararthss splitting of the pairs of tastes,
by increasing the mass parametey, calledp in Adams’ Ref. [2]. The effect of such increase is
shown Fig. 5 (3rd panel). The gap in the spectrum, which wastimplete unit disk in the free
case, and which shrank to a small but disk-like shap@ at6 for my = 1, now becomes a very
narrow band. Unitary projection of the operator becomesendiifficult, and after unitarization
many modes are present near the origin, which makes invensare difficult as well.
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This figure also shows that the spectrum remains centereaat #t® origin: changingry is
not the analogue of changing the mass in the Wilson openatdch shifts the whole spectrum.
Rather,mg is the analogue of Wilson’s hopping paramet§2].

This is why the eigenvalue gap in the Hermitian oper&tgfm) (Fig. 1) persists for large val-
ues of|m|. Shifting the whole spectrum @i by a taste-independent mass term is also possible, but
will destroy the symmetry of the spectrum about the origithatiit any computational advantage.
Finally, Fig. 5 (right) shows how the gap in the spectrunbgfcloses a3 = 5.8.

6. Conclusion

Our study shows that Adams’ staggered overlap operator svagkadvertised: the taste-
dependent mass operator in its kernel yields 2 massless taghout fine-tuning, and the topology
and locality properties are similar to Neuberger’s operato

On very smooth gauge configurations, the computer cost obeaquropagator is nearly an
order of magnitude less than in Neuberger's case, but tirk4rbnsporters in the flavored mass
term reduce this advantage to a facfti2) on 3 = 6 configurations. Another drawback of Adams’
construction is that the continuous symmetry of the mass&mgered overlap operatotusl),
not SU(2) as one would wish for a 2-flavor chiral symmetry.

The lack of robustness and of full chiral symmetry can bottatdéressed by modifying the
mass operator, for example with 2-link transporters [1&} tieduce the number of light tastes to
1. Preliminary results [12] confirm our expectations, buhdbbring the cost of staggered overlap
fermions near that of ordinary staggered fermions: avgidooting still has its price.
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