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To reduce errors in light-quark mass determinations, it is now necessary to consider electromag-
netic contributions to light-meson masses. Calculations using staggered quarks and quenched
photons are currently underway. Suitably-extended chiral perturbation theory is necessary to ex-
trapolate the lattice data to the physical limit. Here we give (preliminary) results for light-meson
masses using staggered chiral perturbation theory including electromagnetism, and discuss the
extent to which quenched-photon simulations can improve quark-mass calculations.
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1. Introduction

As fundamental parameters of the Standard Model, quark masses are important to high-energy
phenomenology. Lattice gauge theory can be used for precision, non-perturbative calculations of
these masses, with state-of-the-art calculations using a vacuum including three or even four light,
dynamical quarks: u,d,s, and c. In addition, some recent calculations have included electromag-
netic effects via a quenched photon field. This has been done, for example, by the RBC Collabora-
tion [1]. In calculations of quark masses by the MILC Collaboration [2], however, electromagnetic
effects have in general been estimated based on continuum calculations. For the calculation in
Ref. [2], the uncertainty due to electromagnetic effects dominates mu/md and is significant for mu

and md , as shown in Table 1. To put this error on better footing and to gain the higher precision
desired by phenomenologists, the MILC collaboration is working to reduce the electromagnetic
uncertainty in mu/md [3, 4]. The “rooted staggered chiral perturbation theory” (rSχPT) expres-
sions reported in this work are a necessary step towards that goal. Our calculations do not assume
quenched photons but allow the sea quark charges to take nonvanishing values. For comparison
with simulations with quenched electromagnetism one can simply set the sea quark charges to
zero.

2. Electromagnetism and Quark Masses

Quark masses are obtained by tuning bare-quark masses such that lattice-calculated meson
masses match experiment. Taking the K+ mass as an example, one tunes the QCD-only lattice
result (M2

K+)QCD to match experiment with electromagnetic effects subtracted off [2];

(M2
K+)QCD ≡M2

K+− (M2
K±−M2

K0)EM. (2.1)

where M2
K+ is the experimental value, and the subscript “EM” denotes the purely electromagnetic

contribution1.
To obtain a value for (M2

K± −M2
K0)EM, one uses an observation made by Dashen in the late

1960’s that the leading order electromagnetic effects are identical in the kaon and pion systems [5].
Specifically,

(M2
K±−M2

K0)EM = (M2
π±−M2

π0)EM. (2.2)

Corrections to Eq. (2.2) are referred to as the “violation of Dashen’s theorem” and are often
parametrized as

(M2
K±−M2

K0)EM = (1+∆E)(M2
π±−M2

π0)EM. (2.3)

A lattice calculation of the ratio (M2
K± −M2

K0)EM/(M2
π± −M2

π0)EM yields a value of 1 + ∆E in
which common systematics cancel. This can be combined with experimental measurements of
(M2

π+−M2
π0)EM to obtain the kaon splitting needed for Eq.( 2.1).

In Ref. [2], ∆E was based on estimates from continuum calculations. A direct lattice calcula-
tion of ∆E will allow for improved accuracy and precision. Simulations by the MILC collaboration
using “asqtad” staggered quarks [6] are reported in these proceedings [3]. To complete the calcu-
lation, the rSχPT calculation for the meson mass must also be done. We report our preliminary
results for that calculation [7] here.

1We assume, for now, that the electromagnetic effects are small for M2
K0 .
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mu md mu/md

central value 1.9 4.6 0.42
statistics 0.0 0.0 0.00
lattice-systematic 0.1 0.2 0.01
perturbative 0.1 0.2 –
electromagnetic 0.1 0.1 0.04

Table 1: Quark masses as given in Ref. [2]. Electromagnetic effects are the leading error in the ratio mu/md

and significant in mu and md . Electromagnetic errors are estimated from continuum calculations. Details
about this and the determination of other errors can be found in Ref. [2]

2.1 The Neutral Pion

The true π0 is a ūu− d̄d state. Because of electromagnetic disconnected-diagram contributions
to its mass, even for mu =md , it is difficult to simulate. Instead, one simulates a meson created from
a light quark and a light anti-quark that are distinct flavors and have opposite electric charges [1, 3].
We call this neutral meson the π ′, and make the replacement

M2
π±−M2

π0 →M2
π±−M2

π ′ (2.4)

for the mass splitting. In the continuum, this approximation neglects some electromagnetic contri-
butions to the physical π0

(
M2

π0−M2
π ′
)

EM =
2∆̃EM

16π2 f 2 M2
π

(
lnM2

π +1
)
+ e2M2

π (LECs) , (2.5)

where “LECs” stands for a linear combination of the low energy constants. At the physical point,
the difference given in Eq. (2.5) is small compared to the electromagnetic correction to the charged
pion, δ EMM2

π± , which is dominated by the kaon mass:

δ
EMM2

π± ≈
2∆̃EM

16π2 f 2 M2
K lnM2

K + e2M2
K (LECs) , (2.6)

with

∆̃EM ≡
4e2C

f 2 , (2.7)

where e is the fundamental electric charge, and C is a leading order (LO) LEC.

3. Overview of the Calculation

We split the overview into two parts. Section 3.1 reviews the needed results from previous
calculations, while Sec. 3.2 describes new work.
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3.1 Previous Calculations

The leading-order, continuum, chiral Lagrangian including electromagnetic effects, but drop-
ping the pure gauge-field terms, is [8]

L (2) =
1
8

f 2〈dµ
Σ

†dµΣ〉+ 1
8

f 2〈χ†
Σ+χΣ

†〉− 1
24

m2
0〈Φ〉2 + e2C〈QΣQΣ

†〉, (3.1)

where we work in Minkowski space, for ease of comparison with Ref. [8]. Here, f ≈ 130 MeV is
the leading-order pion decay constant in the chiral limit, and χ = 2B0M , where M is the usual
quark-mass spurion.

The first two terms in Eq. (3.1) are the standard kinetic and mass terms. The meson fields are
contained in

Σ = exp(i2φ/ f ), φ =

 U π+ K+

π− D K0

K− K̄0 S

 , (3.2)

where diagonal entries of φ are comprised of u,d,s quark–anti-quark pairs; e.g. U = ūu.
The anomaly term 1

24 m2
0〈Φ〉2 gives mass to the η ′. It also causes the “mesons” on the diagonal

of Φ to have disconnected propagators [9, 10]. Usually, one takes m0→ ∞ at the start, decoupling
the η ′. For a partially quenched and/or staggered calculation, though, it is more convenient to keep
the anomaly term and use the simple U , D, S basis along the diagonal of Φ. In the end, we do take
m0→ ∞ [11].

Electromagnetic effects enter via the the photon field Aµ in the covariant derivative 2

dµΣ = ∂µΣ− ieQAµΣ+ iΣeQAµ . (3.3)

and the term e2C〈QΣQΣ†〉, where C is determined in terms of the pion splittings via Eq. (2.7). Q is
the quark (electric) charge matrix

Q = diag(qu,qd,qs) (3.4)

and has the property 〈Q〉 = 0. With dim(eQ) = dim(p), dim(Aµ) = 1, and e ∼ p, the overall
power-counting scheme is p2 ∼M2 ∼ m∼ e2.

For lattice calculations it is useful to consider the partially quenched case where valence and
sea quarks are distinct, and may have different mass. Taking the limit where valence and sea quark
masses are equal, known as full QCD, recovers usual chiral perturbation theory (χPT) results. We
refer the reader to the literature [9, 10, 12] for details. For studying electromagnetic effects, the
partially-quenched structure allows one to separate valence and sea quark charge contributions in an
advantageous way. The partially-quenched χPT calculation including electromagnetism has been
done by Bijnens and Danielsson [13]. This is extremely useful and provides us with cross-checks
for the staggered calculation.

The rSχPT calculation for meson masses done by Aubin and Bernard [14], without electro-
magnetism, addresses the complexities confronted when dealing with staggered quarks. For each
continuum quark simulated, there are four staggered quarks. These are distinguished by a quantum
number referred to as “taste". When combined to form mesons, the result is a set of sixteen mesons

2Vector and axial vector current sources have been set to zero, since they are not needed here.
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(a) (b) (c) (d)

Figure 1: Feynman diagrams that contribute to the meson-mass at O(p4). Straight lines are the pseudoscalar
meson propagator and wiggly lines are the photon. A filled dot represents an L (2) vertex, while an open
square represents an L (4) insertion. (a) photon tadpole; (b) photon sunset; (c) meson tadpole; (d) O(p4)

tree-level insertion.

of different tastes, which, at O(a2) in the lattice spacing a, can be grouped into five irreducible
representations labeled: pseudoscalar, axial-vector, tensor, vector, singlet. The pseudoscalar-taste
meson is a true Goldstone boson, and for that reason is the valence meson that is usually simulated.
Here, we calculate the mass of the Goldstone meson in rSχPT. The use of staggered quarks brings
a new, taste-violating term into the chiral Lagrangian [14]. The two main effects of this poten-
tial at the one-loop order are the addition of taste breaking corrections to the (staggered) meson
masses, and the appearance of both a taste-dependent, disconnected vertex and a taste-dependent
disconnected propagator [14].

3.2 Staggered Chiral Perturbation Theory with Electromagnetic Contributions

Figure 1 shows the O(p4) contributions to the meson mass. The photon tadpole contributes
zero in dimensional regularization. The photon sunset is straightforward to calculate, since the
vertex is taste-conserving. Calculating the contribution from the meson tadpole, Fig. 1 (c), is
facilitated by using quark-flow diagrams [15]. Figure 2 shows all contributing diagrams considering
connected and disconnected propagators and vertices.

The calculation closely follows that of Ref [14], taking care to include electromagnetic effects
in the LO meson mass. The end result is an electromagnetic contribution from the connected
diagram, and a non-electromagnetic contribution from the disconnected diagrams that matches that
of Ref. [14] if m2

P+
5

in their Eq. (48) is replaced with B0(mx +my). where mx and my are the masses

of valence quarks x and y, respectively.3

(a) (b) (c) (d) (e)

Figure 2: Quark flow diagrams corresponding to the tadpole diagram in Fig. 1(c). (a) the diagram with both
connected propagators and vertices: a “connected” diagram. (b) a disconnected propagator with connected
vertices and a spectator quark: a “hairpin”. (c) a disconnected propagator with connected vertices but no
spectator quark: a “fancy hairpin”. (d) a connected propagator with a disconnected vertex: a “coat hanger”.
(e) both disconnected propagators and vertex: the “coat hanger + bubbles”. Note that any of the disconnected
propagators can include bubble chains. One sees a bubble explicitly in (e), because it is the leading-order,
disconnected vertex + disconnected propagator diagram.

3In Ref. [14], m2
P+

5
= B0(mx +my). Including electromagnetism, m2

P+
5
= B0(mx +my)+q2

xy∆̃EM.
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Specifically, for a meson comprised of quark x and anti-quark y, the non-analytic electromag-
netic contribution is

δM2
xy,5 = − 1

16π2 e2q2
xy M2

xy,5

[
3ln(M2

xy,5/Λ
2
χ)−4

]
−2∆̃EM

16π2 f 2

(
1
16

)
∑
σ ,ξ

[
qxσ qxy `(M2

xσ ,ξ )−qyσ qxy `(M2
yσ ,ξ )

]
, (3.5)

where qxy = qx−qy, sea quarks are labeled by σ , the sixteen meson tastes are labeled by ξ , Λχ is
the chiral scale, and `(M2) is the renormalized loop integral∫ d4k

π2
1

k2 +M2 → `(M2)≡M2 ln(M2/Λ
2
χ) (3.6)

The result in the first line in Eq. (3.5) is from the photon sunset diagram, and that in the second line
is from the meson tadpole.

The contributions from Fig. 2 (d) lead to analytic contributions with unknown low-energy
constants (LECs). We concern ourselves here only with those which are new in the staggered-
electromagnetic calculation, namely the ones O(a2e2). In principle, one could expect contributions
from terms like a2

∑σ q2
σ from the sea sector4, and a2(q2

x +q2
y), and a2q2

xy from the valence charges.
In practice, though, one only has terms ∝ a2(q2

x +q2
y) and ∝ a2q2

xy.

4. Utility of Quenched-Photon Simulations

As was first pointed out in Ref. [13], electromagnetic meson splittings can be extracted at NLO
in ChPT from quenched-photon simulations with no inherent systematic error due to quenching.
There are two places where sea-quark charges can appear: in the non-analytic (logarithm) terms
and in the analytic (LEC) terms. The log terms are completely calculable at NLO. Hence, we can
put in by hand the difference between the result of a simulation with quenched photons (vanishing
sea-quark charges) and the value with physical sea-quark charges. For example, the contribution to
Eq. (3.5) coming from qσ 6= 0 can be added back in at the end of the calculation. This is not true
for the analytic terms, which include, of course, unknown LECs. Nevertheless, the only sea-charge
dependent LEC terms are O(me2) and take the form ∝ (mx +my)∑σ q2

σ . This means they drop out
of the splittings M2

K±−M2
K0 and M2

π±−M2
π ′ .

5. Conclusions

We have discussed the origin of electromagnetic effects in quark masses as they arise in a
typical lattice calculation and shown that the lattice calculation of M2

K± −M2
K0 and M2

π± −M2
π0 can

be used to improve the accuracy and precision of such calculations. For improvement of the calcu-
lations in Ref. [2], the MILC collaboration has begun staggered-quark, quenched-photon simula-
tions [3]. In these proceedings, we have described results of the rooted staggered χPT calculation
needed to extrapolate that lattice data. We have also discussed why quenched-photon simulations
are sufficient for calculating the needed meson-mass splittings.

4The mixed-charge (cross-term) in the sea-sector is zero since 〈Q〉= 0.
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