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1. Introduction

It is well known that QCD in a finite volume V at small quark masses m simplifies as the
Compton wavelength of the pion, m−1

π , becomes large compared to V 1/4 [1]. As the theory is dom-
inated by the constant mode of the pions, the spacetime dependence is suppressed and the low-lying
eigenvalues of the Dirac operator are described by random matrix theory [2], see Ref. [3] for a re-
view. The distribution of the smallest Dirac eigenvalues can be calculated in RMT, whereupon the
low-energy constants (LECs) of chiral perturbation theory are used to map between the dimension-
ful quantities of QCD and the dimensionless quantities of RMT, see, e.g., Ref. [4]. These relations
then allow for an alternative determination of the phenomenologically important LECs.

The lowest-order LECs are Σ and F . While Σ can be determined rather easily from the distri-
bution of the small Dirac eigenvalues, F can be determined only if one includes a suitable constant
background gauge field such as isospin imaginary chemical potential [5, 6]. In the following we
discuss the geometry dependence of these methods and show how to minimize systematic devi-
ations from RMT by an optimal choice of lattice geometry. We also compare our findings with
lattice data of the two-flavor epsilon-regime run of JLQCD [7] and extract Σ and F from these
configurations.

2. The epsilon expansion at NNLO

In this section we briefly review the epsilon expansion at next-to-next-to-leading order (NNLO)
with a small imaginary chemical potential iµ , see Ref. [8]. In the domain where the Compton
wavelength of the pion becomes large compared to V 1/4, chiral perturbation theory (χPT) can be
reordered according to the power counting [1]

V ∼ ε
−4 , ∂ρ ∼ ε , π(x)∼ ε , mπ∼ ε

2 , µ ∼ ε
2 (2.1)

with covariant derivative ∂ρ , pion fields π(x), pion mass mπ , and chemical potential µ . The cor-
responding systematic expansion of χPT is called epsilon expansion. To each order in ε2 one can
integrate out the spacetime dependence and obtain a finite-volume effective theory in terms of the
constant pion mode. The order in ε2 then translates into the order in 1/(F2

√
V ). At leading order

the finite-volume effective action is given by

SLO
eff =−1

2
V ΣTr(M†U0 +U−1

0 M)− 1
2

V F2 Tr(CU−1
0 CU0) (2.2)

with constant pion mode

U0 = exp[iπ0] , π0 =
1
V

∫
d4x π(x) , (2.3)

quark mass matrix M = diag(m1, . . . ,mN f ), and quark chemical potential matrix C = diag(µ1,

. . . ,µN f ), where m f is the quark mass and iµ f is the imaginary chemical potential of quark flavor
f = 1, . . . ,N f . We find that SLO

eff is identical to the RMT action with nonzero chemical potential [6].
Note that the pion decay constant F drops out for vanishing chemical potential. At next-to-leading
order (NLO) in ε2 the general form of Eq. (2.2) remains unchanged with Σ→ ΣNLO

eff , F → FNLO
eff
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[9, 10, 11]. In an actual lattice simulation we measure effective values Σeff and Feff, and we need to
include finite-volume corrections to recover the infinite-volume values Σ and F .

At NNLO and to leading order in the small chemical potential1 the effective action has the
form [8]

SNNLO
eff =−1

2
V Σ

NNLO
eff Tr(M†U0 +U−1

0 M)− 1
2

V (FNNLO
eff )2 Tr(CU−1

0 CU0)

+ϒ1Σ(V F)2 Tr(C)[Tr(U0{M†,C})+Tr(U−1
0 {C,M})]

+ϒ2Σ(V F)2 Tr({M†,C}U0C+{C,M}CU−1
0

+{U0,C}U−1
0 CU0M† +CU0{C,U−1

0 }MU−1
0 )

+ϒ3Σ(V F)2 Tr(U−1
0 CU0C+C2)Tr(MU−1

0 +M†U0)

+ϒ4Σ(V F)2 Tr(U−1
0 CU0C−C2)Tr(MU−1

0 +M†U0)

+ϒ5Σ(V F)2 Tr([M†,C]U0C+[C,M]CU−1
0 +[U0,C]U−1

0 CU0M† +CU0[C,U−1
0 ]MU−1

0 )

+ϒ6(V Σ)2[Tr(MU−1
0 +M†U0)]

2 +ϒ7(V Σ)2[Tr(MU−1
0 −M†U0)]

2

+ϒ8(V Σ)2[Tr(MU−1
0 MU−1

0 )+Tr(M†U0M†U0)]

+H1V F2 Tr(C2)+H2(V Σ)2 Tr(M†M)+H3V F2(TrC)2 (2.4)

with finite-volume effective coupling constants ϒi and Hi. The LECs Σ and F also receive further
corrections, Σ→ ΣNNLO

eff and F → FNNLO
eff . The terms in Eq. (2.4) that were not present in Eq. (2.2)

cannot be mapped to RMT. These terms are proportional to the ϒi and Hi. Therefore the magnitude
of these coefficients determines the systematic deviations from RMT of, e.g., Dirac eigenvalue
distributions. The coefficients H1 and H3 do not couple to U0 or M and are therefore irrelevant for
Dirac eigenvalue distributions (which involve derivatives w.r.t. M in the partially quenched theory).
The coefficients ϒi, H2, ΣNNLO

eff , and FNNLO
eff depend on the NLO LECs of χPT and on the geometry

of the spacetime box through finite-volume propagators. Explicit results are given in [8].
To be specific we discuss the following lattice geometries from now on,

(ax) L0 = xL , L1 = L2 = L3 = L ,

(bx) L3 = xL , L0 = L1 = L2 = L , (2.5)

where x ∈ {1,3/2,2,3,4}, and Li is the extent of the spacetime box in direction i. In Fig. 1 we
show the finite-volume corrections to Σ and F for the different geometries at NNLO for a set of
parameters similar to the parameters of the JLQCD two-flavor epsilon-regime run [7]. We note
that for the same asymmetry x, geometry (bx) leads to smaller finite-volume corrections to F than
geometry (ax). This was also observed in Ref. [11] at NLO. The finite-volume corrections to Σ are
invariant under (ax)↔ (bx). This is expected since F is related to the chemical potential, which
breaks the permutation symmetry of the four spacetime dimensions, while the same symmetry is
intact for the Σ term in Seff.

We continue our discussion with the finite-volume effective coupling constants ϒi and H2

that are responsible for the systematic deviations from RMT. It is an interesting observation that
ϒ1,ϒ2,ϒ3 do not depend on the NLO LECs of χPT and depend on the geometry only through a

1There are also NNLO terms proportional to V 2C4 that have been omitted in (2.4).
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Figure 1: Finite-volume corrections to Σ and F for geometries (ax) on the left and (bx) on the right. The
results are taken from Ref. [8] with parameters F = 90 MeV, L = 1.71 fm, and m2

π
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Figure 2: Geometry dependence of systematic deviations from RMT.

common coefficient γ , i.e.,

ϒ1,ϒ2,ϒ3 ∝ γ . (2.6)

The coefficient γ changes under (ax)↔ (bx), while ϒ4, . . . ,ϒ8,H2 are invariant under the same
exchange [8]. We plot γ for different geometries in Fig. 2 for the same set of parameters used in
Fig. 1. We note that the coefficient γ , and thus a part of the systematic deviations from RMT, can
be reduced significantly by choosing the geometry (bx) instead of (ax) for the same value of the
asymmetry x.

3. Numerical results

In this section we check the results of the previous section against the epsilon-regime run of
JLQCD with two dynamical overlap fermions with mass amu = amd = 0.002 (m2

π

√
V ≈ 1) and

32×163 lattice points at a = 0.107(3) fm (V 1/4 ≈ 1.7 fm) [7]. The sea quarks are at zero chemical
potential, the valence quarks are at zero and nonzero imaginary chemical potential. In this way the
existing configurations can be used to extract Σ and F with low numerical cost.

We first fit the distribution of the lowest-lying Dirac eigenvalue P1(λ ) [12] in Fig. 3 in order
to extract the finite-volume effective value

a3
Σeff = 0.00208(2) , (3.1)
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aλ

P1(λ)

0.003 0.009 0.015 0.021 0.027

15

45

75

105
Fit to RMT
Lattice data

Figure 3: Fit to lowest-lying Dirac eigenvalue distribution P1(λ ) with χ2/dof = 2.9, a3Σeff = 0.00208(2).

where we only cite the statistical error. This value is compatible with a3Σeff = 0.00212(6) obtained
in Ref. [7] on the same configurations by a fit to the integrated Dirac eigenvalue distribution. Note,
however, that there are significant systematic deviations from the RMT prediction in some regions
of the Dirac eigenvalue aλ . Also note that both values for Σeff are scheme dependent and that we
give only the values for the lattice scheme here. Including finite-volume corrections at NLO gives
an infinite-volume value Σ = Σeff/1.1454 [8]. We use only NLO finite-volume corrections here
and in the remainder of this paper since the NNLO finite-volume corrections and the systematic
deviations from RMT are of the same order.

Next we fit the shift of the lowest-lying Dirac eigenvalue due to a small imaginary chemical
potential iµ in order to extract F as proposed in Ref. [5]. RMT predicts a Gaussian distribution
with σ2 = µ2F2V for the distribution Pd of the difference d between the lowest Dirac eigenvalue
at zero and at nonzero imaginary chemical potential [5, 6, 13]. In Fig. 4 we show the resulting fit
for geometry (a2) with finite-volume effective value

F(a2)
eff = 67(5) MeV , (3.2)

where we only cite statistical errors. We note that the quality of the fit is rather bad (χ2/dof = 4.2)

d̂

Pd(d̂)

−0.4 −0.2 0 0.2 0.4

1

2

3

4 Gaussian fit
Lattice data

Figure 4: Fit to the distribution of Dirac eigenvalue shifts Pd(d̂) due to imaginary chemical potential aµ =

0.01 with d̂ = dΣV in geometry (a2). The result is given by Feff = 67(5) MeV with χ2/dof = 4.2.
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Figure 5: Fit to the distribution of Dirac eigenvalue shifts Pd(d̂) due to imaginary chemical potential aµ =

0.01 with d̂ = dΣV in geometry (b2). The result is given by Feff = 86(5) MeV with χ2/dof = 0.91.

and that this value is not compatible with the result from a fit to meson correlators obtained on the
same configurations [14], Fmeson = 87.3(5.6) MeV. If we include finite-volume corrections at NLO
we obtain the infinite-volume value

F(a2) = 51(4) MeV (3.3)

so that the agreement is even worse. The bad χ2/dof = 4.2 suggests that the non-universal terms at
NNLO, see Eq. (2.4) and the subsequent discussion, affect the distribution in a non-trivial manner.

From our discussion in the previous section we learned that we might be able to significantly
reduce these systematic deviations from RMT by choosing lattice geometry (b2) instead of (a2). In
practice this means that we should rotate the lattice by 90 degrees so that we have one large spatial
dimension instead of a large temporal dimension. In Fig. 5 we show the resulting fit for geometry
(b2) with good χ2/dof = 0.91 and

F(b2)
eff = 86(5) MeV , (3.4)

where only statistical errors are given. Including finite-volume corrections at NLO this gives

F(b2) = 81(5) MeV , (3.5)

which agrees within errors with the result from the fit to meson correlators given above. Therefore
we can confirm the analytical results of Ref. [8] in this specific example, and we can successfully
use the method proposed in Ref. [5] to extract F with competitive statistical errors.

4. Conclusions

We conclude that we can understand the geometry dependence of RMT-based methods to
extract LECs from fits to Dirac eigenvalue distributions and that they provide a useful alternative if
one chooses an optimized lattice geometry.
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Our final results for Σ and F obtained from the two-flavor epsilon-regime run of JLQCD are
given by

Σ
MS(2 GeV) = ZMS

S (2 GeV)Σ = (236(6) MeV)3 , F = 81(6) MeV , (4.1)

where both values include finite-volume corrections at NLO, Σ is the chiral condensate in the lattice
scheme, and ZMS

S (2 GeV) = 1.14(2) [7]. We give a combination of statistical errors and uncertainty
in the lattice constant.

We note that within the framework of the finite-volume effective theory of Ref. [8] it is also
possible to calculate Dirac eigenvalue distributions beyond RMT including the systematic devia-
tions at NNLO in the epsilon expansion. Work in this direction is in progress.
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