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1. Introduction

We report on our analytic studies of the renormalizationpprbes of Borici-Creutz [1, 2,
3, 4] and Karsten-Wilczek [5, 6] fermions (see [7, 8, 9], arterences therein), two particular
realizations of minimally doubled fermion$. These actions preserve an exact chiral symmetry
for a degenerate doublet of quarks, and at the same timedhagim strictly local, so that they are
much cheaper to simulate than Ginsparg-Wilson fermiongyTould then become a cost-effective
realization of chiral symmetry at nonzero lattice spacifigisU (1) @ U (1) chiral symmetry, which
is of the same form as in the continuum, protects the quarls finas additive renormalization. As
we have also verified at one loop, the renormalization of trerkgmass has the same form as, say,
overlap or staggered fermions.

It is noteworthy that using minimally doubled fermions or@ aonstruct a conserved axial
current which has a simple expression, involving only neaneighbour sites (see Section 6).
These actions are then among the very few lattice discttimawhich provide a simple (ultralocal)
expression for a conserved axial current.

It is natural to compare these realizations of minimally led fermions with staggered
fermions, which preserve the satd¢l) ® U (1) chiral symmetry and are also ultralocal and com-
parably cheap. The advantage of Borici-Creutz and Karéfilczek fermions is that they contain
2 flavours instead of 4, and thus they do not require any unaited extrapolation to 2 physical
light flavours [11, 12]. Moreover, the construction of feamic operators is much easier than for
staggered fermions, where there is also a complicatedwiténg of spin and flavour. Minimally
doubled actions look then ideal fo; = 2 simulations?2

2. Actions

The free Dirac operator of Borigi-Creutz fermions is givamiomentum space by

D(p) =i Z(y“sinpquy/“cosp“)—ZiFJrrm, (2.1)
[
where 1
Fr=S(n+tptrtn (=1 (2.2)
and
Vo=Twl =T =y (2.3)

D(p) vanishes ap; = (0,0,0,0) andp, = (17/2,11/2, 11/2, 11/2), and can also be seen as a linear
combination of two physically equivalent naive fermionsi€oof them translated in momentum
space).

The free Karsten-Wilczek Dirac operator is given in momangpace by

3

4
D(p) =i wusinpu+iys H (1—cospy), (2.4)
u=1 k=1

1For recent developments, see also [10].

2They remain rather convenient also féyr = 2+ 1 andNs = 2+ 1+ 1 simulations. The second doublet of minimally
doubled quarks will contain chirality-breaking terms ier to give different masses to teandc quarks, however this
is not so important for these larger masses.
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and its zeros are instead @t = (0,0,0,0) andp, = (0,0,0, ).

The two zeros of these actions, corresponding to the pHyigaurs, select a special direction
in euclidean spacetime, identified by the line that connthesn. It is easy to see that in the Borici-
Creutz case the matrix selects as a special direction the major hypercube diagaide in the
Karsten-Wilczek case is the temporal direction which beesthe special one.

As a consequence, hyper-cubic symmetry is broken, and tietgms are symmetric only
under the subgroup of the hyper-cubic group which presdiumgs$o a sign) the respective special
direction. This opens the way to mixings of a new kind undeormalization. One of the main
aims of our work is the investigation of the mixing patterhattappear in radiative corrections.
We have elucidated the one-loop structure of these theai®s one of our main results is that
everything is consistent at the one loop level, and the nexingp are very few.

We also remark that, although the distance between the tres iethe samep — p? = 1),
these two realizations of minimally doubled fermions areawuivalent.

3. Counterterms

Each of the two actions (2.1) and (2.4) does not contain asibte operators which are in-
variant under the subgroup of the hyper-cubic group présgrés respective special direction.
Radiative corrections then generate new contributionssertiorm is not matched by any term in
the original bare actions. It becomes necessary to int@docnterterms to the bare actions in
order to obtain a consistent renormalized theory. Enfgrtire consistency requirement will allow
us to uniquely determine the coefficients of these countege’

One must add to the bare actions all possible countertetoveel by the remnant symmetries.
Moreover, counterterms are needed also in the pure gaugefphe actions of minimally doubled
fermions. The reason for this is that, although at the barel ke breaking of hyper-cubic sym-
metry happens only in the fermionic parts of the actionsharenormalized theory it propagates
(via the interactions between quarks and gluons) also tpuhe gauge sector.

We consider the massless casg= 0, and note that chiral symmetry strongly restricts the
number of possible counterterms. It turns out that therenly one possible dimension-four
fermionic counterterm, which for Borici-Creutz fermions iritten in continuum form as
gry,Dyy. Apossible discretization for it has a form similar to theppmg term in the action:

@) 5 ¥ (WOOTUu(9 9+ afi) ~ lx-+all) FUL 00 (). 3.1)
m

There is also one counterterm of dimension three,

ic3(go)

2PN Y. (32

3|tis interesting in this respect to observe that an actioitkvhontains doublers will in general select some special
direction, and hence require counterterms. However, tggstred fermion formulation is very clever, because it-rear
ranges the 16 spin-flavour components of the 4 doublers orottmers of the unit hypercube. Thanks to this, no special
direction arises, and thus no extra counterterms are ndedttk simulation of staggered fermions. In the case ofeaiv
fermions the 16 doublers are also uniformly distributechia Brillouin zone, and hence there is no special direction in
this case too.
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which is already present in the bare Borigi-Creutz actiart, viath a fixed coefficient-2/a. The
appearance of this counterterm means that in the gene@matized action the coefficient of the
dimension-three operator must be kept general.

For Karsten-Wilczek fermions we find a similar situation.eTdnly gauge-invariant fermionic
counterterm of dimension four is

PysDay, (3.3)
and a suitable discretization of it is
1 ~ —~
e (G0) 5= (W00 yaUa(X) Y(x+a8) — Pxt-ad) e UJ (0 w(x) ). (3.4)

The counterterm of dimension three is for this action

id3(do)
a

W(X) ya P (x) (3.5)

(already present in the bare Karsten-Wilczek action, wiiiked coefficient).
The rules for the counterterm corrections to fermion prapaig, needed for our one-loop cal-
culations, can be easily derived. For external lines, tmeygaen in momentum space respectively

by

. ic
—mwaZm,—:?wr (3.6)
v
for Borici-Creutz fermions, and by
. id
—id4(%o) Vaps, — 3((,3190) Y4 (3.7)

for Karsten-Wilczek fermions.

The gluonic counterterms must be of the form tr FF, but withaumventional choices of the
indices, reflecting the breaking of the hyper-cubic symwnelt turns out that there is only one
purely gluonic counterterm, which for the Borici-Creutzias can be written in continuum form
as

cp(do) Z trFap (X) For (X). (3.8)
ApT

At one loop this counterterm is relevant only for gluon prggi@rs. Denoting the fixed external

indices at their ends witly and v, all possible lattice discretizations of this countertagive in
momentum space the same Feynman rule:

2
—w@)@wmﬁ[m—&—@(}m)l (3.9)
A A

Contributions of this kind must be taken into account for e@ct renormalization of the vacuum
polarization (see Section 5).

In the case of Karsten-Wilczek fermions the counterterncivinieeds to be introduced can be
written in continuum form as

dp(go) Z trFsx (X) Foa (X) Opa. (3.10)
PA
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The Feynman rule for the insertion of this counterterm iremal gluon propagators reads

—dp(Qo) [pu Pv (Oua+ Ova) — Oy (p2 Ouadya + pzzt)] . (3.11)

In perturbation theory the coefficients of all counterteams functions of the coupling which
start at orderg%. We will determine (at one loop) the coefficients of all feomic and gluonic
counterterms by requiring that the renormalized self-gynand vacuum polarization, respectively,
assume their standard form (see Sections 4 and 5).

Counterterm interaction vertices are generated as wellveder, these vertex insertions are
at least of ordegg, and thus they cannot contribute to the one-loop amplittisiEiswe study here.
We also want to emphasize that counterterms not only proatttitional Feynman rules for the
calculation of loop amplitudes. They can also modify Wareniities and hence, in particular,
contribute additional terms to the conserved currents $&etion 6).

4. Determination of the fermionic counterterms

Leaving aside for one moment the counterterms, the quafleselgy of a Borici-Creutz
fermion is given at one loop by

_ _ T
Z(p.mo) =1PZ1(P) +MoZ2(p) +Cu(Go) - IT 3 Pu+Ca(Go) -1, (4.1)
I
where*

2

S1(p) = % Cr [loga2 P2+ 6.80663+ (1—q) ( _loga?p?+ 4.79201()] , (4.2)
2

S2(p) = % Cr [4 loga2p? — 29.48729+ (1— a) ( —loga?p? + 5.79201()] . (4.3)

g%
C1(go) = 1.52766 7 Cr, (4.4)
_ %
Cz(go) = 2954170 1672 Ck, (4.5)

with C = (N2 —1)/2N., anda denotes the gauge parameter in a general covariant gaugéullh
inverse propagator at one loop can be written (without canetms) as

1 (1 Bt B . ey
2 (p,mo)_<l zl) {|p+mo(1 zz+zl) |01F§pu x r}. (4.6)
We can only cast the renormalized propagator in the starfdard
Z;

b2 =, 4.7
(P, Mo) B Zomo (4.7)

where the wave-function and quark mass renormalizaticlofa@re given by

-1

Z,— (1— zl> C Zpm=1— (zz— zl), (4.8)

4For our calculations we have developed programs writtehératgebraic computer languag®RM[13, 14].



Minimally doubled fermions Stefano Capitani

provided that we employ the counterterms to cancel the linmon-invariant factorscg andcy).

The term proportional ta; can be eliminated by using the dimension-four counterterm,
@r 5, Dy, while the term proportional to, can be eliminated using the dimension-three coun-
terterm, Ya@ Tl . This amounts to applying the insertions of egs. (3.6) and) (Ve thus deter-
mine in this way that at one loop, for Borici-Creutz fermipns

a3

162 CF T0(d). (4.9

2
J_crro(gd),  ca(gy) = 152766

03(90) = 2954170 1612

Things work out very similarly for Karsten-Wilczek fermisnin this case the inverse propa-
gator at one loop (without counterterms) is

_ _ id
> (p,mp) = (1—21) : <|F5+mo (1—22+21> —id1 yaps — ;2 V4>, (4.10)
where

2

S1(p) = %CF |oga2p2+9.24089+(1—a)(—|oga2p2+4.79201c)], (4.11)
2

So(p) = %Cp 4Ioga2p2—24.36875+(1—a)(—loga2p2+5.792010>], (4.12)

92
di(go) = —0.12554 F;’TZC,:, (4.13)
2
da(go) = —29.53230 —0_ . (4.14)

162

By using the appropriate countertermig, D4 and Yat y, ¢ the renormalized propagator can
be written in the standard form. Then, at one loop we obtain

e

Tor2 OF T O(g). (4.15)

2
ds(go) = —29.53230 %cp +0O(gd),  da(go) = —0.12554

One may expect that the above subtraction procedure camixioaut systematically at every
order of perturbation theory. After the subtractions via #ppropriate counterterms are properly
taken into account, the extra terms appearing in the selfggrdisappear.

5. Determination of the gluonic counterterms

Leaving aside for one moment the counterterms, the cotitriibof the fermionic loops to the
one-loop vacuum polarization of Borici-Creutz fermionsmas out from our calculations as

2
%Cz ( - g log p?a? + 23.6793) ] (5.1)

I'Im(p) = (pu Pv— 5uvp2>

((p +Py) Y PP (Zp>2> % ¢ 0.9094
- _pP- % _c,.0.
vl 2 Mg ™) ) 16m
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where Tr(t3?) = C, 62°. For Karsten-Wilczek fermions the corresponding result is

2 8
N gg(p) _ (pu Py — 5wp2> %Cz ( ~3 log p?a® + 19.99468> ] (5.2)
2
- (pu Pv (Oua+ dva) — Oy (p2 Ouadya+ pzzt) ) % C2-1269766

We notice the appearance of non-standard terms, compatbdewgi. Wilson fermions. These
new terms break hyper-cubic symmetry. It is remarkable ttey still satisfy the Ward identity
PN (p) = 0.

At this stage we can employ the gluonic counterterms, whathespond to the insertions in
the gluon propagator according to egs. (3.9) and (3.11)atecal the hyper-cubic-breaking terms
in the vacuum polarization. The coefficients of these cateres are hence determined as

9%
16712

o

cp(go) = —0.9094- 162

C2+0(gy),  dp(do) = —1269766 —25C,+0(gg).  (5.3)
It is also very important to remark that no power-divergent®a? or 1/a) show up in our

results for the vacuum polarization.

6. Conserved currents

We have also calculated the renormalization of the locaa®hbilinears. We have found that
no mixings occur for the scalar and pseudoscalar densitiédhe tensor current. For the vector
and axial currents instead a mixing can be seen, which is secuence of the breaking of hyper-
cubic invariance, and their renormalization factdysandZ, are thus are not equal to one (for their
numerical values see Section 8). These local currents deethnot conserved. Using chiral Ward
identities we have then derived the expressions of the ceedeurrents, which are protected from
renormalization.

As we have previously remarked, the counterterms influemeexpressions of the conserved
currents. Itis easy to see that the counterterm of dimeribiee does not modify the Ward identi-
ties, and is irrelevant in this regard. On the contrary, theedision-four counterterm

Ca(%o) Z z (w(x) W Up(X) g(x+afl) + P(x+al) w UZ(X) W(X)) (6.1)

o v

generates new terms in the Ward identities and hence cotdsilto the conserved currents. The
conserved axial current for Borigi-Creutz fermions in thaarmalized theory turns out to have the
expression

A5 = 3 (W00 0 1401600 w0+ 0) + W) 4~ 1 6UL09 000

C4(do)

2

<w(X)FvsUu(X)W(X+aﬁ)+W(X+aﬁ)FwUJ(X)w(X)>- 6.2)
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For Karsten-Wilczek fermions, application of the chiral Md/adentities gives for the conserved
axial current

A (%) = %(Tﬁ(x)(vu ~ iy (1 8,4)) 9 Up (X) W(x+ )
PO o) (96 (1 820) UL 09 000 (6.3)
ds(go)

_|_

) (00 v s Wi+ )+ W) Vs UL09 000 )

The conserved vector currents can be obtained by simplypidrgpheys matrices from the above
expressions. We remark that the vector current is isospigied, representing the conservation of
fermion number (as also discussed in [15]). The axial ctrieowever, is a non-singlet because
the doubled fermions have opposite chirality. All theseents have a very simple structure, which
involves only nearest-neighbour sites.

We have computed the renormalization of these point-sphitenits, and verified that is one.
As all four cases are very similar, we briefly discuss herectieserved vector current for Borigi-
Creutz fermions, for which the sum of the “standard” diagsgmertex, sails and operator tadpole,
without the counterterm) gives

%

D _Cry, | - loga?p® — 6.80664+ (1— a) ( loga2p? — 4.79202)

The value of the coefficient of the mixing @§'(go) = —1.52766 %?TZCF +O(gd).

When one adds to this result the wave-function renormadzgthat is,=;(p) of the quark
self-energy), the term proportional §g is exactly cancelled. The mixing term, proportional'to
instead remains, because we have not yet taken into ac¢muobtinterterm.

The part of the conserved vector current due to the counterterresponds to the last line
of eq. (6.2). Its 1-loop contribution is quite easy to congp(gincec, is already of ordegg), and
is given bycs(go)I. We now note that the value @f is already known from the self-energy,
and numerical inspection shows th@atgo) = —¢5Y(go) (within the precision of our integration
routines). Thus, th& mixing term is finally cancelled. We emphasize that only thesticular
value ofcy, determined from the self-energy, does exactly this job.

We have thus obtained that the renormalization constartiesfet point-split currents is one,
which confirms that they are conserved currents. Everythings out to be consistent at the one
loop level.

7. Numerical ssimulations

If we use the nearest-neighbour forward covariant devieati, ((x) = %[Uu(x) Y (x+al)—
Y(x)] and the corresponding backward diig, we can express the (bare) actions in position space
in a rather compact form. It then becomes apparent that theesealizations of minimally doubled
fermions bear a close formal resemblance to Wilson fermions

4 4
f 1 . .
Dwiison = é{ Zlyu(Du+ 0,) —ar Zlmumu}a (7.1)
H= p=
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4
Dic =51 3 W (O + D) +ia Z Vi 050 ¢ (7.2)
2\ &
1[ ¢ 3
D+f<W = 5{ 1Vu(Du+ 0,) — laV4kZ Dka}. (7.3)
M= =1

All these three formulations contain a dimension-five ofmaren the bare action, and so we expect
leading lattice artefacts to be of order However, for minimally doubled fermions these effects
could numerically be small, if the results of [16] are to béidwed.

We will not discuss here how to achieve one-loop (or nonpleative) ordera improvement
for these theories. The classification of all relevant irahefent operators could turn out to require
a lengthy analysis. Notice that additional dimension-5rafmes will occur not only in the quark
sector (e.gPT 3y ,, DDy ), but also in the pure gauge part (€ Bwa FuvDa Fuy). Indeed, when
Lorentz invariance is broken, the statement that only dpesavith even dimension can appear in
the pure gauge action is no longer true.

We would now like to see what can be learned, from the one-t@dgulations that we have
carried out, regarding the numerical simulations of miriyndoubled fermions. These simulations
will have to employ the complete renormalized actions,ldirig the counterterms.

The renormalized action for Borici-Creutz fermions in piasi space contains three countert-
erms and reads

c— a42{2i

X

(W09 (v + Ca(B)T +i) Uy (9 w(x+ )

HM4>

1

~B(x+afl) (v + CalB) = i) UL ()]
100 (o 6(8) L) w9

1
qu ( Nc w) Z

Hvp

whereF'a is some lattice discretization of the field-strength tendtfe have here redefined the
coefficient of the dimension-3 counterterm, us@g@B) = —2+ c3(f3) (which does not vanish at
tree level).®

The renormalized action for Karsten-Wilczek fermions aisatains three counterterms and
reads

P00 002+ du(B) 810) 1 (1 81 U0 i+

HM#

S =Y {5

—P(x+afl) (yu(1+da(B) Oua) +iya(1— 8ua)) Ul (X) W(X)]

SWe assume that simulations will be carried out at very snalles ofimg, so that our analysis of the counterterms,
which assumes chiral symmetry, is essentially still vaBdt note also that in our results of egs. 4.1 and 4.10, oldaine
for generalmy, no new dimension-four terms proportional to this mass apfapart from the standard ori;). Thus,
at one loop we do not need further counterterms in additiorike three which we have found. This strongly suggests
that our analysis of the counterterms remains valid evemwh@&al symmetry is broken.
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100 (mo-+35(8) ) o

By (1—NiCRetrPW> <1+dp(3)5u4)} (7.5)

v

(d3(B) = 3+ds(B) has a non-zero value at tree level).
In perturbation theory the coefficients of the countertehange the expansions

G(go) = —2+cVR+cPgh+..;  da(g) =3+dY@+dPgE+...  (7.6)
calto) = PR+ dalgo) = dPE+dP+...  (77)
(o) = R+l +..;  de(go) = dY@+dPgE+....  (7.8)

The same counterterms also appear at the nonperturbataledad need to be taken into account
for a consistent simulation of these fermions. Their notysbative determination is one the most
important task for the near future. This can be achievedyusiiitable renormalization conditions,

and it remains to be seen which ones will turn out to be morgeruant in practice.

We have previously seen that in perturbation theory the-fiimensional fermionic counter-
term is necessary for the proper construction of the coesecurrents. Its coefficient, as deter-
mined from the one-loop self-energy, has exactly the rigiie for which the conserved currents
remain unrenormalized. This suggests that one possiblpenambative determination @f, (and
d4) can be accomplished by simulating matrix elements of thesfuormalized) conserved current,
and imposing (by tuning the coefficient) that the electriarge is one.

Another effect of radiative corrections is to move the palethe quark propagator away from
their tree-level positions. Itis the task of the dimensibree counterterm, for the appropriate value
of the coefficientcs (or ds), to bring the two poles back to their original locations.e$h shifts of
the poles can introduce oscillations in some hadronic taroa functions as a function of time
separation (similarly to staggered fermions). Then onsiptesway to determines (dz) is to tune
it in appropriately chosen correlation functions untilgbescillations are removed.

Such oscillations, familiar from the staggered formulatioome about since the underlying
fermion field can create several different species, ancetbpscies occur in different regions of
the Brillouin zone. It would be interesting to explore whatlor not these oscillations could be
cancelled by constructing hadronic operators spread @amby neighbours [17].

It is important to remember that because the two speciesfarppmsite chirality, the naive
ys matrix is physically a flavour non-singlet. The naive oregiseudoscalar fielfiys can create
only flavour non-singlet pseudoscalar states. To creatdlakieur-singlet pseudoscalar meson,
which gets its mass from the anomaly, one needs to combiids fael nearby sites with appropriate
phases.

We would like to stress that the breaking of hyper-cubic swtmndoes not generate any
sign problem for the Monte Carlo generation of configuratiomhe gauge action is real, and the
eigenvalues of the Dirac operator come in complex conjugaits, so that the fermion determinant
is always non-negative.

The purely gluonic counterterm for Borici-Creutz fermioingroduces in the renormalized
action operators of the kin# - B, E1Ep, BoBs (and similar). In a hyper-cubic invariant theory,

10
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instead, only the standard terr&€ and B? are allowed. Fixing the coefficiemb could then be
done by measuringE - B), (E;Ey), ---, and tuningcp in such a way that one (or more) of these
expectation values is restored to its proper value pettiteea hyper-cubic invariant theory, i.e.
zero. These effects could turn out to be rather small, gikeahdnly the fermionic part of the tree-
level action breaks hyper-cubic symmetry. It could alsohz¢ bther derived quantities are more
sensitive to this coefficient, and more suitable for its revtyrbative determination. In general one
can look for Ward identities in which violations of the standl Lorentz invariant form, as functions
of cp, occur.

For Karsten-Wilczek fermions the purely gluonic counterténtroduces an asymmetry be-
tween Wilson loops containing temporal links relative togé involving spatial links only. One
could then fixdp by computing a Wilson loop lying entirely in two spatial ditens, and then
equating its result to an ordinary Wilson loop which also lirass in the time direction.

In the end only Monte Carlo simulations will reveal the at@mount of symmetry breaking.
This could turn out to be large or small depending on the olagte considered. One important
such quantity is the mass splitting of the charged piongivel&o the neutral pion. Indeed, since
there is only &J (1) ®U (1) chiral symmetry, thet® is massless, as the unique Goldstone boson
(for mg — 0), butrr™ andr are massive.

Furthermore, the magnitude of these symmetry-breakiregesfficould turn out to be substan-
tially different for Borici-Creutz compared to Karstendé#iek fermions. Thus, one of these two
actions could in this way be raised to become the preferredamumerical simulations.

8. A unifying notation for the two fermion discretizations

By introducing a particular notation, some similaritiesvibeen the two realizations of min-
imally doubled fermions can be revealed. This applies tofdien of the action, operators and
counterterms. For this purpose one can introduce a 4-coempaject/\,, defined as

N-y) = (8.1)

1 )

dusa Karsten-Wilczek y* Karsten-Wilczek
A= o .
5 Borici-Creutz

I Borici-Creutz

In both cases this object points from the zero of the actidheatenter of the Brillouin zone to the
other zero (describing the second fermion, of oppositeattyi).

At first we show that by means of this object one can cast bdtorecinto similar (although
non-equivalent) forms. Their free Dirac operators, as weeladready seen in Section 7, contain
the same naive fermion piece but a different dimension-fperator. The latter can be rewritten in
this new notation as

6 10 = 2 5 Ay s 2P (1
Diw(K) = = gv/\  sin? = (1 5W), (8.2)
DB (k) = —%' T Ay sinza% (1-26,). 8.3)
v

The factorg1— d,y) and(1—2d,,) cannot be transformed into each other, and this illustithtzts
the two actions are inequivalent and must be distinguishedveé remarked in Section 2).

11
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Although the quark propagator cannot be cast into a uniforpression using this notation,
this turns out to be possible for operators (e.g. local cusrand counterterms), as well as some
other results such as the expression for vacuum polanzafior example, the various counterterms
that we have previously discussed can be easily cast in aletetypunified way for the two actions.

If we rewrite the three counterterms making use of the objegtthe counterterms of dimension
three appear as

PN Y)P(x), (8.4)
the fermionic ones of dimension four become
W) (A-y)(A-D)g(x), (8.5)
and the gluonic ones are
> AuFupFou/y. (8.6)
H.Vp

Here (and in the following) objects written in this unifiedtation may differ by simple numerical
coefficients from the corresponding quantities which weehareviously used in the conventional
notation.

Let us now consider the results of the one-loop calculatiat tve have presented in the
previous Sections. One can rewrite the full self-energyH@ut counterterms) for both actions as

_ . L
Z:|p21+mozz+|c1(/\-y)(/\-p)+cza(/\-y), (8.7)
with & being given by eitheg; or d;. Also the fermionic bilinears can be expressed in a unifieghfo
2
Using the abbreviations = % andL = loga?p?, the results for the one-loop vertex diagram for
the local scalar, vector and tensor bilinears are
— 4L + 2436875+ (1—a)(L—5.792010 ) Karsten-Wilczek

CS=b . : (8.8)
— 4L +2948729+ (1—a)(L —5.79201Q ) Borici-Creutz

o Yu( —L+1044610+ (1—a)(L— 4.79201()) —2.88914 Ay (N -y) Karsten-WiIc%Sellé )
H Yu( —L+9.54612+ (1—a)(L— 4.79201()) —0.20074 Ay (A -y) Borigi-Creutz
Ouv(4.17551+ (1—a) (L —3.79201Q ) Karsten-Wilczek
Cly=b N . (8.10)
O,y (2.16548+ (1—a)(L—3.79201Q ) Borici-Creutz

For the conserved vector current, the sum of the standapkphagrams (vertex, sails and opera-
tor tadpole) reads for the two actions

) { Vi g —L—9.24089%+ (1— a) (L —4.79201Q +0.12554 A, (A-y) Karsten-Wilczek
Yu

—L—6.80663+ (1—a)(L— 4.79201()) —3.05532 A, (A-y) Borigi-Creutz
(8.11)
Perhaps one of the most striking examples of the convenigiités notation can be observed
in the case of the vacuum polarization. The contributioneofrfion loops to this quantity contains
structures which break hyper-cubic symmetry. It can betanigs

M4y (P) = 3 (PuPy — P8u) + g (A P) Py + Avpis) = (AWM + uu(A-P)?)). (8:12)
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with the numerical results (as we have seen in Section 5)

8 .
~ | —SL+19.99468 Karsten-Wilczek
S3(gR) = 3 8.13
(%) {—gl_+23.6793 Borigi-Creutz (813)
~ | —12.69766 Karsten-Wilczek
dy(R) = 8.14
o(%) {—3.6376 Borigi-Creutz ~ ’ 8.19)

with b = % (Wilson fermions havets = b(— 4L +4.337003 anddg = 0). Thus, a single for-
mula can describe the structures which arise in the caiounlat the vacuum polarization for both
actions.

With this notation we have thus shown that operator strestand results for Borici-Creutz
and Karsten-Wilczek fermions, although distinct, shar@yr@mmon traits. As can be inspected
in the above expressions, another remarkable feature i@pjoelae that, aftef\; is introduced, the
summed indices occur in pairs (like in the continuum), arso &he free indices match exactly on
both sides of equations. We do not know if this will always fpep, also if one computes more
complicated quantities.

Even without using thé\ notation, we also discovered that the hyper-cubic-brepkimms
of the vacuum polarization in eq. (8.12) can be put for botfioas in the same algebraic form,
namely

P2y, T H Yo, T} + 8 {B, T HB, T} — %{Jzi,r}<{vu,¢}{vv,r} +{vv,¢}{vu,r}), (8.15)

where in the case of Karsten-Wilczek fermidnsnust be replaced by, /2. This substitution is
suggested by comparison of the standard relafiea % SulVu+ Vu) of Borici-Creutz fermions
with the formulay, = % SulVu+ y/“) for Karsten-Wilczek fermions, expressing the symmetries
of the action (as can be seen from the expression of the patgragvhen one expands it around
the second zero). Whether there is any deeper significantteststructural “equivalence” of the
hyper-cubic-breaking structures in the vacuum polaigratiremains an open question.

9. Conclusions

Borici-Creutz and Karsten-Wilczek fermions are describga fully consistent renormalized
quantum field theory. Three counterterms need to be adddtktbare actions, and all their co-
efficients can be calculated either in perturbation theasyfe have shown), or nonperturbatively
from Monte Carlo simulations (a task for the future, for whige have suggested some strategies).
After these subtractions are consistently taken into atgdlie power divergence in the self-energy
is eliminated, and no other power divergences occur foruahtjties that we calculated.

We have argued that under reasonable assumptions andifgldlae nonperturbative deter-
mination of these counterterms, no special features oéttves realizations of minimally doubled
fermions should hinder their successful Monte Carlo sitmma

Conserved vector and axial currents can be derived, andhdnesy simple expressions which
involve only nearest-neighbours sites. We have then hezebthe very few cases where one can
define a simple conserved axial current (also ultralocal).
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Finally, we would like to observe that this work is also anregée of the usefulness of pertur-
bation theory in helping to unfold theoretical aspects effplattice formulations.
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