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1. Introduction

We report on our analytic studies of the renormalization properties of Boriçi-Creutz [1, 2,
3, 4] and Karsten-Wilczek [5, 6] fermions (see [7, 8, 9], and references therein), two particular
realizations of minimally doubled fermions.1 These actions preserve an exact chiral symmetry
for a degenerate doublet of quarks, and at the same time they remain strictly local, so that they are
much cheaper to simulate than Ginsparg-Wilson fermions. They could then become a cost-effective
realization of chiral symmetry at nonzero lattice spacing.ThisU(1)⊗U(1) chiral symmetry, which
is of the same form as in the continuum, protects the quark mass from additive renormalization. As
we have also verified at one loop, the renormalization of the quark mass has the same form as, say,
overlap or staggered fermions.

It is noteworthy that using minimally doubled fermions one can construct a conserved axial
current which has a simple expression, involving only nearest-neighbour sites (see Section 6).
These actions are then among the very few lattice discretizations which provide a simple (ultralocal)
expression for a conserved axial current.

It is natural to compare these realizations of minimally doubled fermions with staggered
fermions, which preserve the sameU(1)⊗U(1) chiral symmetry and are also ultralocal and com-
parably cheap. The advantage of Boriçi-Creutz and Karsten-Wilczek fermions is that they contain
2 flavours instead of 4, and thus they do not require any uncontrolled extrapolation to 2 physical
light flavours [11, 12]. Moreover, the construction of fermionic operators is much easier than for
staggered fermions, where there is also a complicated intertwining of spin and flavour. Minimally
doubled actions look then ideal forNf = 2 simulations.2

2. Actions

The free Dirac operator of Boriçi-Creutz fermions is given in momentum space by

D(p) = i ∑
µ

(γµ sinpµ + γ ′µ cospµ)−2iΓ+m0, (2.1)

where
Γ =

1
2

(γ1 + γ2+ γ3 + γ4) (Γ2 = 1) (2.2)

and
γ ′µ = ΓγµΓ = Γ− γµ . (2.3)

D(p) vanishes atp1 = (0,0,0,0) and p2 = (π/2,π/2,π/2,π/2), and can also be seen as a linear
combination of two physically equivalent naive fermions (one of them translated in momentum
space).

The free Karsten-Wilczek Dirac operator is given in momentum space by

D(p) = i
4

∑
µ=1

γµ sinpµ + iγ4

3

∑
k=1

(1−cospk), (2.4)

1For recent developments, see also [10].
2They remain rather convenient also forNf = 2+1 andNf = 2+1+1 simulations. The second doublet of minimally

doubled quarks will contain chirality-breaking terms in order to give different masses to thesandc quarks, however this
is not so important for these larger masses.
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and its zeros are instead atp1 = (0,0,0,0) andp2 = (0,0,0,π).
The two zeros of these actions, corresponding to the physical flavours, select a special direction

in euclidean spacetime, identified by the line that connectsthem. It is easy to see that in the Boriçi-
Creutz case the matrixΓ selects as a special direction the major hypercube diagonal, while in the
Karsten-Wilczek case is the temporal direction which becomes the special one.

As a consequence, hyper-cubic symmetry is broken, and theseactions are symmetric only
under the subgroup of the hyper-cubic group which preserves(up to a sign) the respective special
direction. This opens the way to mixings of a new kind under renormalization. One of the main
aims of our work is the investigation of the mixing patterns that appear in radiative corrections.
We have elucidated the one-loop structure of these theories, and one of our main results is that
everything is consistent at the one loop level, and the new mixings are very few.

We also remark that, although the distance between the two zeros is the same (p2
2− p2

1 = π2),
these two realizations of minimally doubled fermions are not equivalent.

3. Counterterms

Each of the two actions (2.1) and (2.4) does not contain all possible operators which are in-
variant under the subgroup of the hyper-cubic group preserving its respective special direction.
Radiative corrections then generate new contributions whose form is not matched by any term in
the original bare actions. It becomes necessary to introduce counterterms to the bare actions in
order to obtain a consistent renormalized theory. Enforcing the consistency requirement will allow
us to uniquely determine the coefficients of these counterterms.3

One must add to the bare actions all possible counterterms allowed by the remnant symmetries.
Moreover, counterterms are needed also in the pure gauge part of the actions of minimally doubled
fermions. The reason for this is that, although at the bare level the breaking of hyper-cubic sym-
metry happens only in the fermionic parts of the actions, in the renormalized theory it propagates
(via the interactions between quarks and gluons) also to thepure gauge sector.

We consider the massless casem0 = 0, and note that chiral symmetry strongly restricts the
number of possible counterterms. It turns out that there is only one possible dimension-four
fermionic counterterm, which for Boriçi-Creutz fermions is written in continuum form as
ψ Γ∑µ Dµψ . A possible discretization for it has a form similar to the hopping term in the action:

c4(g0)
1
2a ∑

µ

(
ψ(x)ΓUµ (x)ψ(x+aµ̂)−ψ(x+aµ̂)ΓU†

µ(x)ψ(x)
)
. (3.1)

There is also one counterterm of dimension three,

ic3(g0)

a
ψ(x)Γψ(x), (3.2)

3It is interesting in this respect to observe that an action which contains doublers will in general select some special
direction, and hence require counterterms. However, the staggered fermion formulation is very clever, because it rear-
ranges the 16 spin-flavour components of the 4 doublers on thecorners of the unit hypercube. Thanks to this, no special
direction arises, and thus no extra counterterms are neededfor the simulation of staggered fermions. In the case of naive
fermions the 16 doublers are also uniformly distributed in the Brillouin zone, and hence there is no special direction in
this case too.
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which is already present in the bare Boriçi-Creutz action, but with a fixed coefficient−2/a. The
appearance of this counterterm means that in the general renormalized action the coefficient of the
dimension-three operator must be kept general.

For Karsten-Wilczek fermions we find a similar situation. The only gauge-invariant fermionic
counterterm of dimension four is

ψ γ4D4ψ , (3.3)

and a suitable discretization of it is

d4(g0)
1
2a

(
ψ(x)γ4U4(x)ψ(x+a4̂)−ψ(x+a4̂)γ4U†

4 (x)ψ(x)
)
. (3.4)

The counterterm of dimension three is for this action

id3(g0)

a
ψ(x)γ4 ψ(x) (3.5)

(already present in the bare Karsten-Wilczek action, with afixed coefficient).
The rules for the counterterm corrections to fermion propagators, needed for our one-loop cal-

culations, can be easily derived. For external lines, they are given in momentum space respectively
by

−ic4(g0) Γ ∑
ν

pν , −
ic3(g0)

a
Γ (3.6)

for Boriçi-Creutz fermions, and by

−id4(g0) γ4 p4, −
id3(g0)

a
γ4 (3.7)

for Karsten-Wilczek fermions.
The gluonic counterterms must be of the form trFF, but with nonconventional choices of the

indices, reflecting the breaking of the hyper-cubic symmetry. It turns out that there is only one
purely gluonic counterterm, which for the Boriçi-Creutz action can be written in continuum form
as

cP(g0) ∑
λρτ

trFλρ(x)Fρτ (x). (3.8)

At one loop this counterterm is relevant only for gluon propagators. Denoting the fixed external
indices at their ends withµ andν , all possible lattice discretizations of this countertermgive in
momentum space the same Feynman rule:

−cP(g0)

[
(pµ + pν) ∑

λ
pλ − p2−δµν

(
∑
λ

pλ

)2
]

. (3.9)

Contributions of this kind must be taken into account for a correct renormalization of the vacuum
polarization (see Section 5).

In the case of Karsten-Wilczek fermions the counterterm which needs to be introduced can be
written in continuum form as

dP(g0) ∑
ρλ

trFρλ (x)Fρλ (x)δρ4. (3.10)
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The Feynman rule for the insertion of this counterterm in external gluon propagators reads

−dP(g0)
[
pµ pν (δµ4 + δν4)−δµν

(
p2 δµ4δν4 + p2

4

)]
. (3.11)

In perturbation theory the coefficients of all countertermsare functions of the coupling which
start at orderg2

0. We will determine (at one loop) the coefficients of all fermionic and gluonic
counterterms by requiring that the renormalized self-energy and vacuum polarization, respectively,
assume their standard form (see Sections 4 and 5).

Counterterm interaction vertices are generated as well. However, these vertex insertions are
at least of orderg3

0, and thus they cannot contribute to the one-loop amplitudesthat we study here.
We also want to emphasize that counterterms not only provideadditional Feynman rules for the
calculation of loop amplitudes. They can also modify Ward identities and hence, in particular,
contribute additional terms to the conserved currents (seeSection 6).

4. Determination of the fermionic counterterms

Leaving aside for one moment the counterterms, the quark self-energy of a Boriçi-Creutz
fermion is given at one loop by

Σ(p,m0) = i6pΣ1(p)+m0Σ2(p)+c1(g0) · i Γ∑
µ

pµ +c2(g0) · i
Γ
a
, (4.1)

where4

Σ1(p) =
g2

0

16π2 CF

[
loga2p2 +6.80663+(1−α)

(
− loga2p2 +4.792010

)]
, (4.2)

Σ2(p) =
g2

0

16π2 CF

[
4 loga2p2−29.48729+(1−α)

(
− loga2p2 +5.792010

)]
, (4.3)

c1(g0) = 1.52766·
g2

0

16π2 CF , (4.4)

c2(g0) = 29.54170·
g2

0

16π2 CF , (4.5)

with CF = (N2
c −1)/2Nc, andα denotes the gauge parameter in a general covariant gauge. The full

inverse propagator at one loop can be written (without counterterms) as

Σ−1(p,m0) =
(

1−Σ1

)
·
{

i6p+m0

(
1−Σ2+ Σ1

)
− ic1 Γ ∑

µ
pµ −

ic2

a
Γ
}
. (4.6)

We can only cast the renormalized propagator in the standardform

Σ(p,m0) =
Z2

i6p+Zmm0
, (4.7)

where the wave-function and quark mass renormalization factors are given by

Z2 =
(

1−Σ1

)−1
, Zm = 1−

(
Σ2−Σ1

)
, (4.8)

4For our calculations we have developed programs written in the algebraic computer languageFORM[13, 14].
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provided that we employ the counterterms to cancel the Lorentz non-invariant factors (c1 andc2).

The term proportional toc1 can be eliminated by using the dimension-four counterterm,
ψ Γ ∑µ Dµ ψ , while the term proportional toc2 can be eliminated using the dimension-three coun-
terterm, 1/aψ Γψ . This amounts to applying the insertions of eqs. (3.6) and (3.7). We thus deter-
mine in this way that at one loop, for Boriçi-Creutz fermions,

c3(g0) = 29.54170·
g2

0

16π2 CF +O(g4
0), c4(g0) = 1.52766·

g2
0

16π2 CF +O(g4
0). (4.9)

Things work out very similarly for Karsten-Wilczek fermions. In this case the inverse propa-
gator at one loop (without counterterms) is

Σ−1(p,m0) =
(

1−Σ1

)
·
(

i6p+m0

(
1−Σ2+ Σ1

)
− id1 γ4p4−

id2

a
γ4

)
, (4.10)

where

Σ1(p) =
g2

0

16π2 CF

[
loga2p2 +9.24089+(1−α)

(
− loga2p2 +4.792010

)]
, (4.11)

Σ2(p) =
g2

0

16π2 CF

[
4 loga2p2−24.36875+(1−α)

(
− loga2p2 +5.792010

)]
, (4.12)

d1(g0) = −0.12554·
g2

0

16π2 CF , (4.13)

d2(g0) = −29.53230·
g2

0

16π2 CF . (4.14)

By using the appropriate countertermsψ γ4 D4ψ and 1/aψ γ4 ψ the renormalized propagator can
be written in the standard form. Then, at one loop we obtain

d3(g0) = −29.53230·
g2

0

16π2 CF +O(g4
0), d4(g0) = −0.12554·

g2
0

16π2 CF +O(g4
0). (4.15)

One may expect that the above subtraction procedure can be carried out systematically at every
order of perturbation theory. After the subtractions via the appropriate counterterms are properly
taken into account, the extra terms appearing in the self-energy disappear.

5. Determination of the gluonic counterterms

Leaving aside for one moment the counterterms, the contribution of the fermionic loops to the
one-loop vacuum polarization of Boriçi-Creutz fermions comes out from our calculations as

Π( f )
µν (p) =

(
pµ pν −δµν p2

)[
g2

0

16π2C2

(
−

8
3

logp2a2 +23.6793

)]
(5.1)

−

(
(pµ + pν) ∑

λ
pλ − p2−δµν

(
∑
λ

pλ

)2
)

g2
0

16π2 C2 ·0.9094,

6
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where Tr(tatb) = C2δ ab. For Karsten-Wilczek fermions the corresponding result is

Π( f )
µν (p) =

(
pµ pν −δµν p2

)[
g2

0

16π2C2

(
−

8
3

logp2a2 +19.99468

)]
(5.2)

−

(
pµ pν (δµ4+ δν4)−δµν

(
p2δµ4δν4+ p2

4

)
)

g2
0

16π2 C2 ·12.69766.

We notice the appearance of non-standard terms, compared with e.g. Wilson fermions. These
new terms break hyper-cubic symmetry. It is remarkable thatthey still satisfy the Ward identity
pµΠ( f )

µν (p) = 0.

At this stage we can employ the gluonic counterterms, which correspond to the insertions in
the gluon propagator according to eqs. (3.9) and (3.11), to cancel the hyper-cubic-breaking terms
in the vacuum polarization. The coefficients of these counterterms are hence determined as

cP(g0) = −0.9094·
g2

0

16π2 C2 +O(g4
0), dP(g0) = −12.69766·

g2
0

16π2 C2 +O(g4
0). (5.3)

It is also very important to remark that no power-divergences (1/a2 or 1/a) show up in our
results for the vacuum polarization.

6. Conserved currents

We have also calculated the renormalization of the local Dirac bilinears. We have found that
no mixings occur for the scalar and pseudoscalar densities and the tensor current. For the vector
and axial currents instead a mixing can be seen, which is a consequence of the breaking of hyper-
cubic invariance, and their renormalization factorsZV andZA are thus are not equal to one (for their
numerical values see Section 8). These local currents are indeed not conserved. Using chiral Ward
identities we have then derived the expressions of the conserved currents, which are protected from
renormalization.

As we have previously remarked, the counterterms influence the expressions of the conserved
currents. It is easy to see that the counterterm of dimensionthree does not modify the Ward identi-
ties, and is irrelevant in this regard. On the contrary, the dimension-four counterterm

c4(g0)

4 ∑
µ

∑
ν

(
ψ(x)γν Uµ(x)ψ(x+aµ̂)+ ψ(x+aµ̂)γν U†

µ(x)ψ(x)
)

(6.1)

generates new terms in the Ward identities and hence contributes to the conserved currents. The
conserved axial current for Boriçi-Creutz fermions in the renormalized theory turns out to have the
expression

Ac
µ(x) =

1
2

(
ψ(x)(γµ + i γ ′µ)γ5Uµ(x)ψ(x+aµ̂)+ ψ(x+aµ̂)(γµ − i γ ′µ)γ5U†

µ(x)ψ(x)

)

+
c4(g0)

2

(
ψ(x)Γγ5Uµ(x)ψ(x+aµ̂)+ ψ(x+aµ̂)Γγ5U†

µ(x)ψ(x)

)
. (6.2)
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For Karsten-Wilczek fermions, application of the chiral Ward identities gives for the conserved
axial current

Ac
µ(x) =

1
2

(
ψ(x)(γµ − iγ4(1−δµ4))γ5Uµ(x)ψ(x+aµ̂)

+ψ(x+aµ̂)(γµ + iγ4(1−δµ4))γ5U†
µ(x)ψ(x)

)
(6.3)

+
d4(g0)

2

(
ψ(x)γ4γ5U4(x)ψ(x+a4̂)+ ψ(x+a4̂)γ4γ5U†

4 (x)ψ(x)

)
.

The conserved vector currents can be obtained by simply dropping theγ5 matrices from the above
expressions. We remark that the vector current is isospin-singlet, representing the conservation of
fermion number (as also discussed in [15]). The axial current, however, is a non-singlet because
the doubled fermions have opposite chirality. All these currents have a very simple structure, which
involves only nearest-neighbour sites.

We have computed the renormalization of these point-split currents, and verified that is one.
As all four cases are very similar, we briefly discuss here theconserved vector current for Boriçi-
Creutz fermions, for which the sum of the “standard” diagrams (vertex, sails and operator tadpole,
without the counterterm) gives

g2
0

16π2 CF γµ

[
− loga2p2−6.80664+(1−α)

(
loga2p2−4.79202

)]
+ccv

1 (g0)Γ. (6.4)

The value of the coefficient of the mixing isccv
1 (g0) = −1.52766· g2

0
16π2 CF +O(g4

0).
When one adds to this result the wave-function renormalization (that is,Σ1(p) of the quark

self-energy), the term proportional toγµ is exactly cancelled. The mixing term, proportional toΓ,
instead remains, because we have not yet taken into account the counterterm.

The part of the conserved vector current due to the counterterm corresponds to the last line
of eq. (6.2). Its 1-loop contribution is quite easy to compute (sincec4 is already of orderg2

0), and
is given byc4(g0)Γ. We now note that the value ofc4 is already known from the self-energy,
and numerical inspection shows thatc4(g0) = −ccv

1 (g0) (within the precision of our integration
routines). Thus, theΓ mixing term is finally cancelled. We emphasize that only thisparticular
value ofc4, determined from the self-energy, does exactly this job.

We have thus obtained that the renormalization constant of these point-split currents is one,
which confirms that they are conserved currents. Everythingturns out to be consistent at the one
loop level.

7. Numerical simulations

If we use the nearest-neighbour forward covariant derivative ∇µψ(x) = 1
a [Uµ(x)ψ (x+aµ̂)−

ψ(x)] and the corresponding backward one∇∗
µ , we can express the (bare) actions in position space

in a rather compact form. It then becomes apparent that thesetwo realizations of minimally doubled
fermions bear a close formal resemblance to Wilson fermions:

D f
Wilson =

1
2

{
4

∑
µ=1

γµ(∇µ + ∇∗
µ) −ar

4

∑
µ=1

∇∗
µ∇µ

}
, (7.1)
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D f
BC =

1
2

{
4

∑
µ=1

γµ(∇µ + ∇∗
µ) + ia

4

∑
µ=1

γ ′µ ∇∗
µ∇µ

}
, (7.2)

D f
KW =

1
2

{
4

∑
µ=1

γµ(∇µ + ∇∗
µ) − iaγ4

3

∑
k=1

∇∗
k∇k

}
. (7.3)

All these three formulations contain a dimension-five operator in the bare action, and so we expect
leading lattice artefacts to be of ordera. However, for minimally doubled fermions these effects
could numerically be small, if the results of [16] are to be believed.

We will not discuss here how to achieve one-loop (or nonperturbative) ordera improvement
for these theories. The classification of all relevant independent operators could turn out to require
a lengthy analysis. Notice that additional dimension-5 operators will occur not only in the quark
sector (e.g.,ψ Γ∑µν DµDνψ), but also in the pure gauge part (e.g.,∑µνλ FµνDλ Fµν). Indeed, when
Lorentz invariance is broken, the statement that only operators with even dimension can appear in
the pure gauge action is no longer true.

We would now like to see what can be learned, from the one-loopcalculations that we have
carried out, regarding the numerical simulations of minimally doubled fermions. These simulations
will have to employ the complete renormalized actions, including the counterterms.

The renormalized action for Boriçi-Creutz fermions in position space contains three countert-
erms and reads

Sf
BC = a4∑

x

{
1
2a

4

∑
µ=1

[
ψ(x)(γµ +c4(β )Γ+ iγ ′µ)Uµ(x)ψ(x+aµ̂)

−ψ(x+aµ̂)(γµ +c4(β )Γ− iγ ′µ)U†
µ(x)ψ(x)

]

+ψ(x)
(

m0 + c̃3(β )
i Γ
a

)
ψ(x)

+β ∑
µ<ν

(
1−

1
Nc

RetrPµν

)
+cP(β ) ∑

µνρ
trFlat

µρ(x)Flat
ρν(x)

}
, (7.4)

whereF lat is some lattice discretization of the field-strength tensor. We have here redefined the
coefficient of the dimension-3 counterterm, usingc̃3(β ) = −2+ c3(β ) (which does not vanish at
tree level).5

The renormalized action for Karsten-Wilczek fermions alsocontains three counterterms and
reads

Sf
KW = a4∑

x

{
1
2a

4

∑
µ=1

[
ψ(x)(γµ (1+d4(β )δµ4)− iγ4 (1−δµ4))Uµ(x)ψ(x+aµ̂)

−ψ(x+aµ̂)(γµ (1+d4(β )δµ4)+ iγ4(1−δµ4))U†
µ(x)ψ(x)

]

5We assume that simulations will be carried out at very small values ofm0, so that our analysis of the counterterms,
which assumes chiral symmetry, is essentially still valid.But note also that in our results of eqs. 4.1 and 4.10, obtained
for generalm0, no new dimension-four terms proportional to this mass appear (apart from the standard one,Σ2). Thus,
at one loop we do not need further counterterms in additions to the three which we have found. This strongly suggests
that our analysis of the counterterms remains valid even when chiral symmetry is broken.

9
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+ψ(x)
(

m0 + d̃3(β )
i γ4

a

)
ψ(x)

+β ∑
µ<ν

(
1−

1
Nc

RetrPµν

)(
1+dP(β )δµ4

)}
(7.5)

(d̃3(β ) = 3+d3(β ) has a non-zero value at tree level).
In perturbation theory the coefficients of the countertermshave the expansions

c̃3(g0) = −2+c(1)
3 g2

0 +c(2)
3 g4

0 + . . . ; d̃3(g0) = 3+d(1)
3 g2

0 +d(2)
3 g4

0 + . . . (7.6)

c4(g0) = c(1)
4 g2

0 +c(2)
4 g4

0 + . . . ; d4(g0) = d(1)
4 g2

0 +d(2)
4 g4

0 + . . . (7.7)

cP(g0) = c(1)
P g2

0 +c(2)
P g4

0 + . . . ; dP(g0) = d(1)
P g2

0 +d(2)
P g4

0 + . . . . (7.8)

The same counterterms also appear at the nonperturbative level, and need to be taken into account
for a consistent simulation of these fermions. Their nonperturbative determination is one the most
important task for the near future. This can be achieved using suitable renormalization conditions,
and it remains to be seen which ones will turn out to be more convenient in practice.

We have previously seen that in perturbation theory the four-dimensional fermionic counter-
term is necessary for the proper construction of the conserved currents. Its coefficient, as deter-
mined from the one-loop self-energy, has exactly the right value for which the conserved currents
remain unrenormalized. This suggests that one possible nonperturbative determination ofc4 (and
d4) can be accomplished by simulating matrix elements of the (unrenormalized) conserved current,
and imposing (by tuning the coefficient) that the electric charge is one.

Another effect of radiative corrections is to move the polesof the quark propagator away from
their tree-level positions. It is the task of the dimension-three counterterm, for the appropriate value
of the coefficientc3 (or d3), to bring the two poles back to their original locations. These shifts of
the poles can introduce oscillations in some hadronic correlation functions as a function of time
separation (similarly to staggered fermions). Then one possible way to determinec3 (d3) is to tune
it in appropriately chosen correlation functions until these oscillations are removed.

Such oscillations, familiar from the staggered formulation, come about since the underlying
fermion field can create several different species, and these species occur in different regions of
the Brillouin zone. It would be interesting to explore whether or not these oscillations could be
cancelled by constructing hadronic operators spread over nearby neighbours [17].

It is important to remember that because the two species are of opposite chirality, the naive
γ5 matrix is physically a flavour non-singlet. The naive on-site pseudoscalar fieldψγ5ψ can create
only flavour non-singlet pseudoscalar states. To create theflavour-singlet pseudoscalar meson,
which gets its mass from the anomaly, one needs to combine fields on nearby sites with appropriate
phases.

We would like to stress that the breaking of hyper-cubic symmetry does not generate any
sign problem for the Monte Carlo generation of configurations. The gauge action is real, and the
eigenvalues of the Dirac operator come in complex conjugatepairs, so that the fermion determinant
is always non-negative.

The purely gluonic counterterm for Boriçi-Creutz fermionsintroduces in the renormalized
action operators of the kindE ·B, E1E2, B2B3 (and similar). In a hyper-cubic invariant theory,
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instead, only the standard termsE2 andB2 are allowed. Fixing the coefficientcP could then be
done by measuring〈E ·B〉, 〈E1E2〉, · · ·, and tuningcP in such a way that one (or more) of these
expectation values is restored to its proper value pertinent to a hyper-cubic invariant theory, i.e.
zero. These effects could turn out to be rather small, given that only the fermionic part of the tree-
level action breaks hyper-cubic symmetry. It could also be that other derived quantities are more
sensitive to this coefficient, and more suitable for its nonperturbative determination. In general one
can look for Ward identities in which violations of the standard Lorentz invariant form, as functions
of cP, occur.

For Karsten-Wilczek fermions the purely gluonic counterterm introduces an asymmetry be-
tween Wilson loops containing temporal links relative to those involving spatial links only. One
could then fixdP by computing a Wilson loop lying entirely in two spatial directions, and then
equating its result to an ordinary Wilson loop which also haslinks in the time direction.

In the end only Monte Carlo simulations will reveal the actual amount of symmetry breaking.
This could turn out to be large or small depending on the observable considered. One important
such quantity is the mass splitting of the charged pions relative to the neutral pion. Indeed, since
there is only aU(1)⊗U(1) chiral symmetry, theπ0 is massless, as the unique Goldstone boson
(for m0 → 0), butπ+ andπ− are massive.

Furthermore, the magnitude of these symmetry-breaking effects could turn out to be substan-
tially different for Boriçi-Creutz compared to Karsten-Wilczek fermions. Thus, one of these two
actions could in this way be raised to become the preferred one for numerical simulations.

8. A unifying notation for the two fermion discretizations

By introducing a particular notation, some similarities between the two realizations of min-
imally doubled fermions can be revealed. This applies to theform of the action, operators and
counterterms. For this purpose one can introduce a 4-component objectΛµ , defined as

Λµ ≡

{
δµ4 Karsten-Wilczek

1
2 Boriçi-Creutz

, (Λ · γ) ≡

{
γ4 Karsten-Wilczek

Γ Boriçi-Creutz
. (8.1)

In both cases this object points from the zero of the action atthe center of the Brillouin zone to the
other zero (describing the second fermion, of opposite chirality).

At first we show that by means of this object one can cast both actions into similar (although
non-equivalent) forms. Their free Dirac operators, as we have already seen in Section 7, contain
the same naive fermion piece but a different dimension-five operator. The latter can be rewritten in
this new notation as

D(5)
KW(k) ≡

2i
a ∑

µ ,ν
Λν γν sin2 apµ

2

(
1−δµν

)
, (8.2)

D(5)
BC(k) ≡ −

2i
a ∑

µ ,ν
Λνγν sin2 apµ

2

(
1−2δµν

)
. (8.3)

The factors(1−δµν) and(1−2δµν) cannot be transformed into each other, and this illustratesthat
the two actions are inequivalent and must be distinguished (as we remarked in Section 2).
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Although the quark propagator cannot be cast into a uniform expression using this notation,
this turns out to be possible for operators (e.g. local currents and counterterms), as well as some
other results such as the expression for vacuum polarization. For example, the various counterterms
that we have previously discussed can be easily cast in a completely unified way for the two actions.
If we rewrite the three counterterms making use of the objectΛµ , the counterterms of dimension
three appear as

iψ(x)(Λ · γ)ψ(x), (8.4)

the fermionic ones of dimension four become

ψ(x)(Λ · γ)(Λ ·D)ψ(x), (8.5)

and the gluonic ones are

∑
µ ,ν ,ρ

ΛµFµρFρνΛν . (8.6)

Here (and in the following) objects written in this unified notation may differ by simple numerical
coefficients from the corresponding quantities which we have previously used in the conventional
notation.

Let us now consider the results of the one-loop calculation that we have presented in the
previous Sections. One can rewrite the full self-energy (without counterterms) for both actions as

Σ = i6pΣ1 +m0Σ2 + ic̃1 (Λ · γ)(Λ · p)+ c̃2
i
a
(Λ · γ), (8.7)

with c̃i being given by eitherci ordi . Also the fermionic bilinears can be expressed in a unified form.

Using the abbreviationsb =
g2

0CF

16π2 andL = loga2p2, the results for the one-loop vertex diagram for
the local scalar, vector and tensor bilinears are

CS = b





(
−4L+24.36875+(1−α)

(
L−5.792010

))
Karsten-Wilczek(

−4L+29.48729+(1−α)
(
L−5.792010

))
Boriçi-Creutz

, (8.8)

CV
µ = b





γµ

(
−L+10.44610+(1−α)

(
L−4.792010

))
−2.88914·Λµ (Λ · γ) Karsten-Wilczek

γµ

(
−L+9.54612+(1−α)

(
L−4.792010

))
−0.20074·Λµ (Λ · γ) Boriçi-Creutz

,(8.9)

CT
µν = b





σµν

(
4.17551+(1−α)

(
L−3.792010

))
Karsten-Wilczek

σµν

(
2.16548+(1−α)

(
L−3.792010

))
Boriçi-Creutz

. (8.10)

For the conserved vector current, the sum of the standard proper diagrams (vertex, sails and opera-
tor tadpole) reads for the two actions

b





γµ

(
−L−9.24089+(1−α)

(
L−4.792010

)
+0.12554·Λµ (Λ · γ) Karsten-Wilczek

γµ

(
−L−6.80663+(1−α)

(
L−4.792010

))
−3.05532·Λµ (Λ · γ) Boriçi-Creutz

.

(8.11)
Perhaps one of the most striking examples of the convenienceof this notation can be observed

in the case of the vacuum polarization. The contribution of fermion loops to this quantity contains
structures which break hyper-cubic symmetry. It can be written as

Π( f )
µν (p) = Σ3 (pµ pν − p2δµν)+dg

(
(Λ · p)(Λµ pν + Λν pµ)− (ΛµΛν p2 + δµν(Λ · p)2)

)
, (8.12)
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with the numerical results (as we have seen in Section 5)

Σ3(g
2
0) = b̃

{
−8

3L+19.99468 Karsten-Wilczek
−8

3L+23.6793 Boriçi-Creutz
, (8.13)

dg(g
2
0) = b̃

{
−12.69766 Karsten-Wilczek
−3.6376 Boriçi-Creutz

, (8.14)

with b̃ =
g2

0C2

16π2 (Wilson fermions haveΣ3 = b̃(−4
3L + 4.337002) anddg = 0). Thus, a single for-

mula can describe the structures which arise in the calculation of the vacuum polarization for both
actions.

With this notation we have thus shown that operator structures and results for Boriçi-Creutz
and Karsten-Wilczek fermions, although distinct, share many common traits. As can be inspected
in the above expressions, another remarkable feature appears to be that, afterΛµ is introduced, the
summed indices occur in pairs (like in the continuum), and also the free indices match exactly on
both sides of equations. We do not know if this will always happen, also if one computes more
complicated quantities.

Even without using theΛ notation, we also discovered that the hyper-cubic-breaking terms
of the vacuum polarization in eq. (8.12) can be put for both actions in the same algebraic form,
namely

p2{γµ ,Γ}{γν ,Γ}+ δµν{6p,Γ}{6p,Γ}−
1
2
{6p,Γ}

(
{γµ , 6p}{γν ,Γ}+{γν , 6p}{γµ ,Γ}

)
, (8.15)

where in the case of Karsten-Wilczek fermionsΓ must be replaced byγ4/2. This substitution is
suggested by comparison of the standard relationΓ = 1

4 ∑µ(γµ + γ ′µ) of Boriçi-Creutz fermions
with the formulaγ4 = 1

2 ∑µ(γµ + γ ′µ) for Karsten-Wilczek fermions, expressing the symmetries
of the action (as can be seen from the expression of the propagator, when one expands it around
the second zero). Whether there is any deeper significance tothis structural “equivalence” of the
hyper-cubic-breaking structures in the vacuum polarizations remains an open question.

9. Conclusions

Boriçi-Creutz and Karsten-Wilczek fermions are describedby a fully consistent renormalized
quantum field theory. Three counterterms need to be added to the bare actions, and all their co-
efficients can be calculated either in perturbation theory (as we have shown), or nonperturbatively
from Monte Carlo simulations (a task for the future, for which we have suggested some strategies).
After these subtractions are consistently taken into account, the power divergence in the self-energy
is eliminated, and no other power divergences occur for all quantities that we calculated.

We have argued that under reasonable assumptions and following the nonperturbative deter-
mination of these counterterms, no special features of these two realizations of minimally doubled
fermions should hinder their successful Monte Carlo simulation.

Conserved vector and axial currents can be derived, and theyhave simple expressions which
involve only nearest-neighbours sites. We have then here one of the very few cases where one can
define a simple conserved axial current (also ultralocal).
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Finally, we would like to observe that this work is also an example of the usefulness of pertur-
bation theory in helping to unfold theoretical aspects of (new) lattice formulations.
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