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1. Introduction

At low energies QCD is dominated by Goldstone boson physidsan be described by chiral
perturbation theory (ChPT) [1, 2, 3]. Effective field thexsricontain an infinite number of operators.
By introducing a suitable power counting scheme, only adinitmber of operators enter up to a
given order in the calculation. The associated low-eneamstants (LECs) have to be determined
by experiments or from numerical lattice QCD simulations.

ChPT can also be applied if the system is enclosed in a finitene and at finite tempera-
ture [4, 5, 6]. We consider QCD with two light quarks in thespm limit m, = my = m, in a finite
volumeV = Lg x Lg x Lg x L; in Euclidean space-time. The Compton wavelength of the aiah
the temporal extent of the box are both much larger than thgedxtent of the box, i.eM 1> L,
respectivelyL; > Ls. Here,M is the leading order pion mass in infinite volume

M? = 2mB, (1.1)

whereB is the low-energy constant related to the quark condensate.

In the chiral limit (n= 0) the low-energy excitations are described by>#4) rotator [7, 8, 9].
At leading order the rotator spectrum is given by
ii+2
2F2A 7
where | can be considered as the "angular momentum" in the interdahédnsional space arfel
is the pion decay constant in the chiral limit. The combimai 2Vs in Eq. (1.2) is the leading order

term of the moment of inerti®. The moment of inertia gets corrections due to ChPT in theadel
regime® = F?Vs(14 ~ 1/(FLs)?+...), where the dimensionless expansion parameter

Ej = i=01,..., (1.2)
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is assumed to be small.

For sufficiently small quark masses the low-energy propemif QCD in the delta regime are
still dominated by the rotator, and the symmetry breakimmgewill give corrections to the rotator
spectrum (1.2). The corresponding small, dimensionleparesion parameter is denoted by

r* = FeLIPM* « 1. (1.4)

In our calculations, we assume the two dimensionless elgapsrameters to be roughly of
the same order, i.&82 ~ r*. Considering contributions up #6(5*) (NNL order), the formula for
the energy gap involves the low-energy const&tB, A1 andAo.

2. Chiral perturbation theory in the delta regime

We use arD(4) non-linear sigma model to describe the partition functieffaour QCD

zz/m§a§—nem(—ﬁyz&) 2.1)
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in four-dimensional Euclidean space-time. The effectiagiangian is expressed in the four-
component vector fields, Whereéz(x) =1. We will start from the effective Lagrangian in the
p-expansion MLg > 1)

L= L+ 2P (2.2)

where

2
EACES %dué(x)aué(x) — F2M?S(x),
(2.3)
o o 2 o o 2
R — (a“S(x) Ou S(x)) 7 (a“S(x)dv S(x)) + symmetry breaking terms

The symmetry breaking terms if® will enter only beyond NNL order in thé-expansion and
can therefore be neglected.

Chiral perturbation series are obtained by expanding tleetafe action around the classical
limit S= 1. However, in the delta regime, this expansion becomes imglass due to the presence
of very low energy modes.

Since the Compton wavelength is much larger than the spatteht of the box, collective
behaviour sets in. Thus, we can introduce a "global" modeeémh time slice, since on a given
time slice the field variables are strongly correlated andtpmost in the same direction (in the
internal space). Due to the fact that the time extent is maicel than the spatial extent, the global
mode performs a slow rotation in the internal four-dimenalspace. The fluctuations (fast modes)
around the direction of the global mode (slow modes) can lieeineated by perturbation theory.

We have to incorporate this non-perturbative behaviourhefgslow modes in the partition
function by introducing a collective variable [10, 11]. Th#ective action is then expressed in
terms of the fast modes and the slow modes. We expand thdiwdfection in the fast modes
and integrate them out in the partition function. We are wpgl dimensional regularisation. By
considering only contributions up to NNL order, the pastitfunction reduces to

ZD/[Dé]exp(—/dt%é(t)é(t)—neo(t)), () = 1. (2.4)

After renormalisation the moment of inertia gets correddi@at NL [10] and NNL order [11]
and reads
26 1

——10.088431628
F22 " FAL [

o=F23 [1 -
11 (2.5)

~x — (= 2 2

+ 000G 5 ( 710g(ALs)? + log(AaLy) )H :

The constant§* anddydyG* are related to the finite volume Green’s functidn(0), respectively

00doD*(0) which enter in perturbation theory for the fast modes

G" =0.2257849591 300,G* = 0.8375369106 (2.6)

1The NNL corrections to the moment of inertia have been cated recently by Niedermayer and Weiermann [12]
in lattice regularised ChPT. In order to compare the twoltesthe matching between the two different regularisation
schemes is needed.
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N1 and/\; are the intrinsic scales related to the low-energy constamnd/, [3]. n which controls
the strength of the symmetry breaking:

(2.7)

n::FﬁgMZP:—sG ]

F2L2
3. Theenergy gap

The partition function (2.4) can be interpreted asG{d) quantum mechanical rotator in an
external symmetry breaking potential. The correspondiaghton operator reads

1

=2 (% - @ne). 3.1)

wherelL is the angular momentum operator in the internal four-disieral space an® andn are
given by Egs. (2.5), (2.7) respectively.

In the chiral limit(n = 0) the energy spectrum of the rotator is given by Eq. (1.2), e/Ré¥s
has to be replaced simply I§. Since®n =r?(1+...) is small, we can calculate the symmetry
breaking corrections to the energy spectrum by applyintudsaition theory. Considering correc-
tions up toc’(5*) we have to calculate the corrections to the rotator ener@y (i to fourth order
in perturbation theory.

The energy gap of the system is defined by the energy differefithe first excited statp= 1
and the ground state= 0. Due to the presence of the symmetry breaking potentidlteexcited
state splits up into a singlet and a triplet energy state redsethe triplet provides the lower energy
difference. Thus, the energy gap which includes symmeggling corrections up tﬁ’((en)"’)
reads
3 (6n)> 193(on)*

L=t T 120 13 |

E (3.2)

We recognise the leading symmetry breaking corredfidini?M#/15 to the energy gap which has
already been given in [9].

4. What arethe constraintson Lsand M?

The moment of inertia (2.5) is an expansion in the dimens&mparameter/{FLs)2. In order
to have a reliable expansion/(FLs)? should be small. Hence, we can estimate that the spatial
extent of the box should be aboubZm or larger

Ls> 2.5fm. (4.1)

Since in the delta regim®lLs < 1, we obtain an estimate for the upper bound\briior a given

box sizelLs. From Eqg. (4.1) we deduce thisk should be at least smaller than roughly 80 MeV.
We have assumed that the two dimensionless expansion paranaee of the same order

(r* ~ &2). This assumption leads to an even smaller upper bouniftar a given box size.,

in the domain where A(FLs)? is small. ForLs = 2.5 fm the corresponding upper bound khis

about 63 MeV, see also Tab. 1.
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Ls[fm] M[MeV] MLs

2.0 134 1.4
2.5 62 0.8
3.0 33 0.5
3.5 19 0.3
4.0 12 0.2

Table 1: Here, the upper bounds & are stated for some selected values gfunder the assumption that
F8LI2M% ~ 1/(FLs)?.

We want to estimate the size of the corrections to the eneagy($12). Therefore, we write

3

E,= 23 [1+ AN + A, (4.2)

whereAy, is the correction to the leading order energy gap, if we aw®rscontributions up to
0(8%). This means that for the moment of inertia (2.5) we considey the corrections up to
1/(FLs)?, and forn (2.7) we consider only the leading tefm\\n are the additional corrections,
if contributions up too’(6*) are taken into accouht For M, we always take the upper bound at
a given box sizds. In Tab. 2 we state some values fy, , respectivelyAyn. for some selected
values oflLs.

Ls[fm] Ane  Anne

2.5 -0.20 0.04
3.0 -0.16 0.03
3.5 -0.13 0.02
4.0 -0.10 0.01

Table 2: We give some estimates for the size of the corrections toribegg gap for some specific values of
Ls. ForM we always assume the upper bound at the given box siz&\_ are the corrections if we consider
only contributions up t@’(5?). Anne are the additional corrections if we take into account dbations up

to 0(6%).

5. Summary and Conclusions

For sufficiently small quark masses the low-energy excitetiof QCD in the delta regime are
still dominated by the rotator spectrum. Up to NNL order thergy gap involves the low-energy
constants-, B, A1 and/Ao.

The delta regime can be probed by lattice QCD simulationsmBgsuring the energy gap in
such simulations and by comparing the corresponding sestth the analytic formula (3.2), we
can determine the low-energy constants very precisely.

2The leading term ofy = F2L3M? will give a correction~ r* to the energy gap.
SWe insertA; = 120MeV andA, = 1200MeV in the NNL order corrections &.
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The formula for the energy gap contains two expansions, evtier corresponding expansion
parameters aré?, respectivelyr*. In order to obtain reliable expansions in these two pararagt
it is essential to choose appropriate valuesLfpandM. We have seen that the box size should be
about 25 fm or larger. On the other hani] has to be chosen between-6@0 MeV or smaller,
depending on the size &f. Therefore, QCD simulations with quark masses below theysizal
value have to be taken into account.

Acknowledgments

This work has been supported in part by the Swiss Nationa&n8ei Foundation. The Albert
Einstein Center for Fundamental Physics is supported byltim®vations- und Kooperationspro-
jekt C-13" of the "Schweizerische UniversitatskonferetdKBCRUS".

References

[1] S. WeinbergPhenomenological LagrangianBhysicaA96 327 (1979)

[2] J. Gasser and H. Leutwyler,
On The Low-Energy Structure of QCBhys. LettB125 321 (1983),
Low-Energy Theorems as Precision Tests of QBBys. LettB125 325 (1983).

[3] J. Gasser and H. Leutwylethiral Perturbation Theory to One Logann. Phys158 142 (1984)
[4] J. Gasser and H. Leutwyldright Quarks at Low TemperaturgBhys. LettB184 83 (1987).
[5] J. Gasser and H. LeutwyléFhermodynamics of Chiral SymmetBhys. LettB188 477 (1987).

[6] J. Gasser and H. Leutwyle8pontaneously Broken Symmetries: Effective Lagrangibfisde
Volume Nucl. PhysB307, 763 (1988).

[7]1 M.E. Fisher and V. Privmarkirst-order transition breaking O(n) symmetry: Finitezeiscaling
Phys. RevB32 447 (1985).

[8] E. Brezin and J. Zinn-Justifinite Size Effects in Phase Transitiohaicl. PhysB257 867 (1985).
[9] H. Leutwyler,Energy Levels of Light Quarks Confined to a Bekys. LettB189 197 (1987).

[10] P. Hasenfratz and F. Niedermay€inite size and temperature effects in the AF Heisenbergetod
Z. PhysB92 91 (1993) hep- | at/ 9212022].

[11] P. HasenfratZThe QCD rotator in the chiral limjtNucl. PhysB828 201 (2009)
[hep-th/ 0909. 3419].

[12] F. Niedermayer and C. Weiermarnirhe rotator spectrum in the delta-regime of the O(n) effectield
theory in 3 and 4 dimensionslucl. PhysB842 248 (2011) hep- | at / 1006. 5855]



