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1. Introduction

At low energies QCD is dominated by Goldstone boson physics and can be described by chiral
perturbation theory (ChPT) [1, 2, 3]. Effective field theories contain an infinite number of operators.
By introducing a suitable power counting scheme, only a finite number of operators enter up to a
given order in the calculation. The associated low-energy constants (LECs) have to be determined
by experiments or from numerical lattice QCD simulations.

ChPT can also be applied if the system is enclosed in a finite volume and at finite tempera-
ture [4, 5, 6]. We consider QCD with two light quarks in the isospin limit mu = md = m, in a finite
volumeV = Ls×Ls×Ls×Lt in Euclidean space-time. The Compton wavelength of the pionand
the temporal extent of the box are both much larger than the spatial extent of the box, i.e.M−1

≫ Ls,
respectivelyLt ≫ Ls. Here,M is the leading order pion mass in infinite volume

M2 = 2mB, (1.1)

whereB is the low-energy constant related to the quark condensate.
In the chiral limit (m= 0) the low-energy excitations are described by anO(4) rotator [7, 8, 9].

At leading order the rotator spectrum is given by

E j =
j( j +2)

2F2Vs
, j = 0,1, . . . , (1.2)

where j can be considered as the "angular momentum" in the internal 4-dimensional space andF
is the pion decay constant in the chiral limit. The combinationF2Vs in Eq. (1.2) is the leading order
term of the moment of inertiaΘ. The moment of inertia gets corrections due to ChPT in the delta
regimeΘ = F2Vs

(

1+ ∼ 1/(FLs)
2 + . . .

)

, where the dimensionless expansion parameter

δ 2 =
1

F2L2
s
≪ 1 (1.3)

is assumed to be small.
For sufficiently small quark masses the low-energy properties of QCD in the delta regime are

still dominated by the rotator, and the symmetry breaking terms will give corrections to the rotator
spectrum (1.2). The corresponding small, dimensionless expansion parameter is denoted by

r4 = F8L12
s M4

≪ 1. (1.4)

In our calculations, we assume the two dimensionless expansion parameters to be roughly of
the same order, i.e.δ 2

∼ r4. Considering contributions up toO(δ 4) (NNL order), the formula for
the energy gap involves the low-energy constantsF, B, Λ1 andΛ2.

2. Chiral perturbation theory in the delta regime

We use anO(4) non-linear sigma model to describe the partition function 2-flavour QCD

Z =

∫

[D~S]δ
(

~S2
−1

)

exp
(

−

∫

dxLeff

)

(2.1)
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in four-dimensional Euclidean space-time. The effective Lagrangian is expressed in the four-
component vector fields~S, where~S2(x) = 1. We will start from the effective Lagrangian in the
p-expansion (MLs≫ 1)

Leff = L
(2) +L

(4) + . . . , (2.2)

where

L
(2) =

F2

2
∂µ~S(x)∂µ~S(x)−F2M2S0(x) ,

L
(4) = −ℓ1

(

∂µ~S(x)∂µ~S(x)
)2

− ℓ2

(

∂µ~S(x)∂ν~S(x)
)2

+symmetry breaking terms.

(2.3)

The symmetry breaking terms inL (4) will enter only beyond NNL order in theδ -expansion and
can therefore be neglected.

Chiral perturbation series are obtained by expanding the effective action around the classical
limit ~S= 1. However, in the delta regime, this expansion becomes meaningless due to the presence
of very low energy modes.

Since the Compton wavelength is much larger than the spatialextent of the box, collective
behaviour sets in. Thus, we can introduce a "global" mode foreach time slice, since on a given
time slice the field variables are strongly correlated and point almost in the same direction (in the
internal space). Due to the fact that the time extent is much larger than the spatial extent, the global
mode performs a slow rotation in the internal four-dimensional space. The fluctuations (fast modes)
around the direction of the global mode (slow modes) can thenbe treated by perturbation theory.

We have to incorporate this non-perturbative behaviour of the slow modes in the partition
function by introducing a collective variable [10, 11]. Theeffective action is then expressed in
terms of the fast modes and the slow modes. We expand the effective action in the fast modes
and integrate them out in the partition function. We are applying dimensional regularisation. By
considering only contributions up to NNL order, the partition function reduces to

Z ∝
∫

[D~e]exp
(

−

∫

dt
Θ
2
~̇e(t)~̇e(t)−ηe0(t)

)

, ~e2(t) = 1. (2.4)

After renormalisation the moment of inertia gets corrections at NL [10] and NNL order [11]
and reads1

Θ = F2L3
s

[

1−
2Ḡ∗

F2L2
s
+

1
F4L4

s

[

0.088431628

+ ∂0∂0Ḡ∗
1

3π2

(1
4

log(Λ1Ls)
2 + log(Λ2Ls)

2
)]

]

.

(2.5)

The constants̄G∗ and∂0∂0Ḡ∗ are related to the finite volume Green’s functionD∗(0), respectively
∂0∂0D∗(0) which enter in perturbation theory for the fast modes

Ḡ∗ = 0.2257849591, ∂0∂0Ḡ∗ = 0.8375369106. (2.6)

1The NNL corrections to the moment of inertia have been calculated recently by Niedermayer and Weiermann [12]
in lattice regularised ChPT. In order to compare the two results, the matching between the two different regularisation
schemes is needed.
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Λ1 andΛ2 are the intrinsic scales related to the low-energy constants ℓ1 andℓ2 [3]. η which controls
the strength of the symmetry breaking:

η = F2L3
sM2

[

1−
3Ḡ∗

F2L2
s

]

. (2.7)

3. The energy gap

The partition function (2.4) can be interpreted as anO(4) quantum mechanical rotator in an
external symmetry breaking potential. The corresponding Hamilton operator reads

H =
1
Θ

(L2

2
− (Θη)e0

)

, (3.1)

whereL is the angular momentum operator in the internal four-dimensional space andΘ andη are
given by Eqs. (2.5), (2.7) respectively.

In the chiral limit(η = 0) the energy spectrum of the rotator is given by Eq. (1.2), whereF2Vs

has to be replaced simply byΘ. SinceΘη = r2(1+ . . .) is small, we can calculate the symmetry
breaking corrections to the energy spectrum by applying perturbation theory. Considering correc-
tions up toO(δ 4) we have to calculate the corrections to the rotator energy (1.2) up to fourth order
in perturbation theory.

The energy gap of the system is defined by the energy difference of the first excited statej = 1
and the ground statej = 0. Due to the presence of the symmetry breaking potential thefirst excited
state splits up into a singlet and a triplet energy state, whereas the triplet provides the lower energy
difference. Thus, the energy gap which includes symmetry breaking corrections up toO

(

(Θη)4
)

reads

ELs =
3

2Θ

[

1+
(Θη)2

15
−

193
120

(Θη)4

152

]

. (3.2)

We recognise the leading symmetry breaking correctionF8L12
s M4/15 to the energy gap which has

already been given in [9].

4. What are the constraints on Ls and M?

The moment of inertia (2.5) is an expansion in the dimensionless parameter 1/(FLs)
2. In order

to have a reliable expansion, 1/(FLs)
2 should be small. Hence, we can estimate that the spatial

extent of the box should be about 2.5 fm or larger

Ls & 2.5fm. (4.1)

Since in the delta regimeMLs ≪ 1, we obtain an estimate for the upper bound onM for a given
box sizeLs. From Eq. (4.1) we deduce thatM should be at least smaller than roughly 80 MeV.

We have assumed that the two dimensionless expansion parameters are of the same order
(r4

∼ δ 2). This assumption leads to an even smaller upper bound forM for a given box sizeLs,
in the domain where 1/(FLs)

2 is small. ForLs = 2.5 fm the corresponding upper bound onM is
about 63 MeV, see also Tab. 1.
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Ls [fm] M [MeV] MLs

2.0 134 1.4
2.5 62 0.8
3.0 33 0.5
3.5 19 0.3
4.0 12 0.2

Table 1: Here, the upper bounds ofM are stated for some selected values ofLs, under the assumption that
F8L12

s M4
∼ 1/(FLs)

2.

We want to estimate the size of the corrections to the energy gap (3.2). Therefore, we write

ELs =
3

2F2L3
s
[1+ ∆NL + ∆NNL] , (4.2)

where∆NL is the correction to the leading order energy gap, if we consider contributions up to
O(δ 2). This means that for the moment of inertia (2.5) we consider only the corrections up to
1/(FLs)

2, and forη (2.7) we consider only the leading term2. ∆NNL are the additional corrections,
if contributions up toO(δ 4) are taken into account3. For M, we always take the upper bound at
a given box sizeLs. In Tab. 2 we state some values for∆NL, respectively∆NNL for some selected
values ofLs.

Ls [fm] ∆NL ∆NNL

2.5 -0.20 0.04
3.0 -0.16 0.03
3.5 -0.13 0.02
4.0 -0.10 0.01

Table 2: We give some estimates for the size of the corrections to the energy gap for some specific values of
Ls. ForM we always assume the upper bound at the given box sizeLs. ∆NL are the corrections if we consider
only contributions up toO(δ 2). ∆NNL are the additional corrections if we take into account contributions up
to O(δ 4).

5. Summary and Conclusions

For sufficiently small quark masses the low-energy excitations of QCD in the delta regime are
still dominated by the rotator spectrum. Up to NNL order the energy gap involves the low-energy
constantsF, B, Λ1 andΛ2.

The delta regime can be probed by lattice QCD simulations. Bymeasuring the energy gap in
such simulations and by comparing the corresponding results with the analytic formula (3.2), we
can determine the low-energy constants very precisely.

2The leading term ofη = F2L3
sM2 will give a correction∼ r4 to the energy gap.

3We insertΛ1 = 120MeV andΛ2 = 1200MeV in the NNL order corrections ofΘ.
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The formula for the energy gap contains two expansions, where the corresponding expansion
parameters areδ 2, respectivelyr4. In order to obtain reliable expansions in these two parameters,
it is essential to choose appropriate values forLs andM. We have seen that the box size should be
about 2.5 fm or larger. On the other hand,M has to be chosen between 60−80 MeV or smaller,
depending on the size ofLs. Therefore, QCD simulations with quark masses below their physical
value have to be taken into account.
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