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1. Introduction

The sigma term and the strangeness content of the nucleon are phelegitatly relevant
guantities which, however, cannot be directly measured in experiment.

They are of interest, because they link the pion-nucleon and kaonemustattering lengths
to the hadron mass spectrum, to the quark massmafio,g, wheremyg=(my+my)/2 denotes the
isospin averaged first generation quark mass, and — last but not leetste strangeness content of
the nucleon which, in turn, has a say on the importance of quantum fluctsiation

That the sigma term cannot be direétipeasured in experiment follows from the definition

JdMy

= (N u+ mydd|N(p)) = =N 1.1
o = (N(PIM MAdN(R) = 3 G (L.1)
O = (N(P) Mg (TU-+ de) N(p)) = myg o (1.2)

 omug
since, in nature, we cannot change the quark masses. Here we leaigedpthe simplification
that emerges in the isospin limit where the up and down quarks assume a coms®mna
By contrast, on the lattice we can vary the quark masses, and this opeitgia apportunity to
determine the pion-nucleon sigma term from lattice QCD datasets with sevarahpgses.

Provided the lattice simulations include a strange quark (which ours doxamalso study
the kaon-nucleon sigma term and gsnucleon sigma term

1 _ 1 1My My
0icn = 5 (MM (N[GU+-SEN) = 5(ma ) {5 5 S0 (1.3)
_ oM
Ossn= 2ms(N|SYN) = 2ms(,—m§ (1.4)
where in practice it is common to trade (1.4) for the strangeness conterd wfitheon
2(N(p)|(59(0)IN(p)) (1.5)

~ (N(p)|(au+dd)(0)|N(p))

to which it relates viaywms/m,q = Ossn/Onn. AlSO the sigma terms are linearly dependent in the
isospin symmetric case (which we will assume in the following, unless statedniglegr since
Onn/Myd + Ossn/Ms = 40kn / (Myg + Ms). The sigma terms have the dimension of a mass (without
showing any scheme or scale dependence), while the strangenest tatgure number.

On the lattice there are two main strategies to determine the sigma terms. One optidicks to s
with the definitions in (1.1-1.4), which then leads one to evalggt® a nucleon in and out state.
This is technically involved (and noisy), due to quark line disconnectedribations [1]. The
second option is to use the Hellmann-Feynman theorem (in a form adapteld théiery [2]) and
to determine the sigma terms from the variation of the nucleon mass as a functienugf/down
or strange quark mass. In the following, we chose the second optioii, ialltee version where
one trades the dependencemyy andms for one inM2 andMZ, = 2MZ — M2, as this choice avoids

IMeasurable quantities like theN and KN scattering lengths can be linked to (1.1,1.2) and (1.3) by means of
formulas from XPT, but this should not be mistaken as a direct measuntof the sigma term.
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Figure 1: Overview of our simulation points in terms bf; andMss= (2MZ — M2)/2, The lattice spacings
for the three values g8 area~0.124fm (3 =3.3), a~0.083fm (3 =3.57), anda~0.065fm (8 =3.7),
respectively, and the physical point is marked with a cr&seor bars are statistical only.

renormalization issues. In other words, we meaddiefor various combinations df12 and MZ

(and various lattice spacingsand box size$&), interpolate the results with ansaetze which we will
discuss below, and evaluate the slope of the interpolation function in then¢ldivection at the
physical mass point. In practice, this interpolation is actually an extrapolatibi} fwhereas the
data have essentially the rightZ), and it is clear that outside the range where we have data the
uncertainty on the derivative grows much faster than the uncertainty dartbgon itself.

In the following we discuss the details of our ensembles in Sec. 2, and sgnfiedkeres of a
novel functional ansatz for octet baryon masses derived fronriemtdbaryon chiral perturbation
theory (CBXPT) in Sec. 3. First experiences with this formula and, asvplenment, with more
traditional polynomial and rational ansaetze are reported in Sec. 4 an8,3espectively. The
main goal is to give a reliable estimate which precision can be achieved withuoentdata, and
this together with some preliminary numbers and some outlook is arranged in Sec.6

2. Overview of our “6 stout” dataset and scale setting issues

The dataset to be used is the one that has been generated for ourfghalizadron spectrum
in QCD [3], and the overall spirit of the analysis is the same one as ifkthg; paper [4].
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The ensembles have been generated with two degenerate light quarkseparate strange
flavor, a scheme commonly referred td\is=2+1 QCD. They are based on a Symanzik action with
tree-level coefficients for the gluons and a clover action with 6 levelstotitsor “EXP” smearing
applied to all links which enter the covariant derivative or the clover terhis Tombination was
found to entail very good scaling properties in standard hadron ddsles/[5]. Note, finally, that
our multiply smeared fermion action is as local as the unsmeared clover quidwdk isual sense
of locality, i.e.D(x,y) =0 for ||x—y|| > 1. Still, in the sense of gauge field locality it has a more
extended rangedD(x,x)/dJ,(y) is non-zero for||x—y|| larger than 1 unit, albeit with a steep
fall-off pattern — see the supplementary online material of [3] for details.

Our ensembles include three lattice spacirays: 0.065,0.083 0.124fm) and the light quark
massamnyq is varied such that the pion mass covers the range from 190 MeV to 670 Bletbntrast
the strange quark mass is almost the physical one; the combinatidg, = 2M2 — M2 is always
in the vicinity of its physical value. The physical box sizes such thaM,L is in the range of
4 or larger; this limits finite-volume effects on our hadron masses to an amamaties than the
statistical fluctuations [3]. An overview of these ensembles (to which vez tefas the “6 stout”
or “6 EXP” data) in terms oM,; andMss= (2MZ — M2)/2 is given in Fig. 1. The smallness of our
minimal pion masM™"~ 190 MeV bears the promise that the extrapolation to the physical point
is a relatively mild one, thus entailing a controllable systematic error in the figaltre

All dimensionful quantities in the previous paragraph implicitly build on knowtedfthe lat-
tice spacinga. This brings us to the issue of how the scale is set which, as we shalkseaas an
extra twist when derivatives w.r.t. the quark mass are taken, relative tatigewhen only spectral
quantities at the physical mass point are calculated. The physical massgb@point where any
2 of the 3 ratios that one may form froaM;;, aMx, aMx (with X being the particle through which
the scale is set, we will consid&r= N, =, Q below) take on their physical values. Apart from the
guantityX to be used to set the scale, there is also a choice regarding the scale sbtimg sin [3]
we used two such schemes, the “mass independent scale setting schdrtreg aatio method”.

In the former case for any givefi the measure@M,;,aMx,aMyx are interpolated by a smooth
function of the bare quark massasy,4,ams and at the point whereaM;;)/(aMx ), (aMk )/ (aMx)
assume their physical values the interpolaa®k is identified witha times the physical value of
My this yields the lattice spacirmfor all ensembles with a common coupling paramgtein the
latter case dimensionless ratios are formed on a per ensemble basis, andtibesre interpolated
with a smooth function odm,q, am, and read off at the point whefaM;;) /(aMx ), (aMk ) /(aMx)
assume their physical values. Effectively this means that the scale is sstdlo ensemble indi-
vidually; the lattice spacing depends on the combinati@fi,am,q,ams). While these two scale
setting schemes yield identical results (at the physical mass point) for atrapguantities [3],
there is a slight subtlety if sigma terms are evaluated via the Hellmann-Feynmaertheo

For definiteness, let us consider the pion nucleon sigma term at a fixettahyalue ofmg,
as a function ofnyg. The way it is calculated on the lattice amounts to the factorization

(2.1)

Omna(Mua) = myg I 2 M _ [ }PDG[M% OMN

Omyqg n(?l\/l% N M_x 0M72.(}Iatt/physrpt

where the apparent dependence on the scale setting chéaanglally boils down to cut-off effects
at the physical mass point (which then disappear in the continuum limit), whiéeihs there is an
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ambiguity in the last bracket for which the continuum limit does not provideredy. The point
is that the derivative in the last bracket makes reference of the trieagayfrom the physical
mass point, and this is, as we have just seen, ambiguous. Perhaps it teadicuss an extreme
case first. If we set the scale through the nucleon, then the pion nudtgna erm with the “ratio
method” is — by definition — zero, i.er,';',\’,ratzo. And if we set the scale through the omega, the
pion nucleon sigma term with the “ratio method” evaluates to the same amount affehende
between the pion nucleon sigma term and the pion omega sigma term in the “massnitheiet
scale setting scheme” would, i @ = g/isss_ gmisss

Taking a look at (1.1, 1.2) reveals the origin of this apparent discrgpaihe matrix elements
refer exclusively to the physical mass point, and can be evaluated wahgwmbiguity (at least
with a Ginsparg-Wilson type action). The not-so-innocent part is theatere w.r.t. the quark mass
taken in the last equalities. Here it is (implicitly) assumed that the lattice spacisghdbehange
as the quark mass is varied, and this is why we must assume — for consigtasoys — the “mass
independent scale setting scheme” when evaluating sigma terms, on the litite Mellmann-
Feynman theorem. In other words, the requirement to attribute a common latiiciagpto all
ensembles with one couplirgyicomes about through the specific transcription of the observable of
interest; in general there is no restriction on the scale setting scheme. Stilkistthee that the
QCD B-function depends, for asymptotic coupling (i.e. for small enough latticeisgg only on
thenumberof active flavors, not on their masses. Accordingly, the “mass indepgrsdale setting
scheme” is always applicable, since it stipulates a property at finite latticingpahich, due to

asymptotic freedom in QCD, must hold at arbitrarily small lattice spacing.

3. Octet masses in CBXPT

Given the discussion in the previous sections, it is clear that a controltethdeation of the
pion nucleon sigma term relies on accurate measurements of the nucleon mass at various pion
and kaon mass points, and a smooth ansitz= My (M2, M) which is valid in the entire regime
from the heaviest datapoint included in the fit down to the physical pion (aadseventually down
to the chiral limit, if one wishes to determine chiral low-energy constants).

In the present contribution we focus opy at the physical mass point. For this purpose it is
fully sufficient to come up with an analytic (i.e. polynomial or rational) exgestor My (M2, MZ)
and an analogous expression kbg (M2, M2) for the stateX that is used to set the scale, since —in
the interval betweeM?™S and MM of the dataset — QCD is an analytic function of the quark
masses. Preliminary results from such an approach will be reported.ib Below.

In a further perspective it is clear that we will not be able to resist the taioptaf testing the
host of predictions by chiral perturbation theory (XPT) of how différguantities relate to each
other. In XPT the quantities connect through their behavior in the (2+flmvd-flavor) chiral limit,
and this is the reason why, with this goal in mind, the ansatz must be good akthéamwn to zero
quark mass. Thh-flavor chiral limit of QCD is dominated by the logarithmic singularity induced
by the spontaneous breaking of the fla®W(N; )a symmetry and the dynamics of the pertinent
pseudo-Goldstone bosons. For observables built from pseudostsgans the consequences have
been cast into a valid form in the seminal papers by Gasser and Leut@yl@r [



2]

Sigma term and strangeness content of the nucleon .Durr and A. Ramos

OvB N N\ 2 =

I 3(D+F)? D? 1(D?+6F?) 3(D—F)?

K | £(5D>-6DF+9F2) 1(D2+9F2?) (D2+F2) (5D?+6DF+9F?)
n #5(D—3F)? iD2 iD2 15(D+3F)?

Table 1: Summary of the baryon-meson-baryon coupliggs in terms of the low-energy constariisF.

For observables that include baryons the task is significantly more inyaweldve attempt to
give a short explanation why there is a plethora of different versibadsiral perturbation theory for
baryons. Ultimately, they all rest on Weinberg’s power counting theo8 (it the basic difficulty
is that the quadratic divergence in self-energies, brought aboutrisan loop attached to a given
line, cannot be traded for a logarithmic divergence, as is the case in thegionally regulated
setup of meson XPT. The original approach taken by Gasser, Saini&waard [9] (“OBXPT")
is to live with this fact and to pay a certain price in terms of a slowly convergergs away
from the chiral limit. The heavy baryon approach by Jenkins and Marj@ba(“HBXPT”) treats
the nucleon as a non-relativistic particle, and in this approach it was stmtrtheA can be
introduced as an explicit degree of freedom and that this improves gmanee [11, 12]. The
covariant approach taken by Becher and Leutwyler [13] (“CBXRilff)s at establishing relativistic
covariance again, via infrared regularization. To the best of our ladye, in this framework other
octet members have not been included as explicit degrees of freedom ye

In short one can say that the HBXPT approach is very successfiildee observables where
the physics is completely dominated by light (i.e. physical or lighter) pions whiehraated as
the pseudo-Goldstone mesons in QCD with 2 light flavors. Extensive wdheinineties showed
that applications of HBXPT to baryon observables that depend on thegstquark flavor lead,
in general, to large (i.e. unnatural) cancellations between leading ordereatt-to-leading order
contributions (see e.g. [14, 15, 16]). During the first decade of themilennium, this insight
was painfully re-discovered by the lattice community, as several collabosatittempted chiral
extrapolationsrfyg — 0 at fixedmg) of 2+1 flavor baryon data, using only leading-order HBXPT
formulas. This triggered a search for “better” (i.e. more practical) racifoe instance

o finite-range regulator extensions of HBXPT to include or model highezraetlects (see e.g.
Ambherst group [15] and Adelaide group [17, 18])

e taming higher order effects by adding a host of decuplet contributions KMRAIBNRSSE
(see e.g. LHP Collaboration [19] and others [20])

e resort to polynomial/rational fit functions M2 0 myq (e.9. us [3, 4] and other groups)
e resort to polynomial/rational fit functions M [0 m, 1/2 (see [19, 21)).
o modify integration contour in CBXPT approach (cf. Dorati-Gail-Hemmer{)22

but a fair review of these developments is clearly beyond the scope ofbthighition.
In the following, we are going to explore the suitability of one such formulackwhelongs to
the last point in this list. It has been worked out by one of us (TH) andvegahe function

X2
H( = 4n2 ,/ 4M2arccos<2|vIO +4—Moog( )} (3.2)
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where X will be a meson mass. Furthermore, it builds $d(3) relations among the various
baryon-meson-baryon couplinggs, as is evident from Tab. 1. The 9@, F) relates to the more
common pair(¢,ga) throughé = F/D andga = D+ F. The two main attractive features, from
our point of view, are that this formula describes how the complete serpbbactet states varies
as a function of the meson masses, and that there is a chance that it redeajnata up to higher
pion masses than is usual in the HBXPT approach (say ugte- 400—500MeV rather than
M ~ 200—300MeV). In full glory it reads

My = Mo—2(2bo+bD+b|:)|\/|%—2(bo+bD—bF)MSgS
I M2) + FN M)+ DN (M2) + 45 M3+ 4B (3.2)
F2 FZ F2
Ma = Mo — 4(bo+ bp /3)M2 — 2(bg + 4bp /3)MZ,
+?:%AH(M%)+g,f—é\H(M%)+?§’—§H(M,§)+46HM§‘T+455—M;—‘S (3.3)
m K n
Ms = Mo — 4(bo + bp)M3 — 2boMZ

+ 3 (M2) + FKZH (MZ) + DIZH (MZ) + 48,M3 + 485ME, (3.4)
Fz Fé Fs
M= = Mg — 2(2b0+ bp — bF)M%— Z(bo +bp + bF)MsgS
+ 1 (M2) + FEH (M2) + D21 (M2) 4 45,M% + 48 M (3.5)
Fn I:K F’]
with all meson-baryon couplinggiug parametrized by only two constants, as indicated in Tab. 1.
In total this gives a parametrization with 8 unknowig, bg, bp, br, &, ga, 0r, dss Note that the
coefficients in front of thé/4 andMZ, contributions are common to all octet members. To the order
we are working at only two of the three pseudo-Goldstone boson massksearly independent;
they are connected through the Gell-Mann-Okubo relatibf 3= 4MZ — Mz, Accordingly, it

makes sense to considéni2, MZ) the basic mass coordinates.

4. First experiences with CBXPT extrapolations

Before applying formula (3.2-3.5) to our data, let us make a few practisahwents. First, it
is important to notice that this formula builds 8u(3) chiral symmetry. AccordinglyMo denotes
the (common) mass of the baryon octet in the 3-flavor chiral limit. Phenomenslagests a value
in the rangeMg ~ 770 MeV, although with a large error margin [23]. Clearly, this is an oppdtstu
for the lattice to come up with a considerably more precise determination. Nextodfiécients
D andF are reasonably well known from phenomenology. It makes sense toefizoimbination
ga = D+F =1.269428) [24] to its value at the physical nucleon mass, as the difference to the
value in the chiral limit is expected to be small. For the rdtie: F /D the situation is less clear;
there are two preferred scenarios in the literatére, 2/3 and§ ~ 0.5.

A few comments are in order regarding the pseudoscalar decay corfstaatsF,. First, let
us clarify that we use the “Bernese” normalization WhE,E@yS: 92.2MeV. The more relevant
point is that, whatever choice is made &y, Fx, Fy, it is not supposed to destroy tJ(3) chiral
symmetry in the 3-flavor chiral limit. Accordingly, pinnirf,, Fc,F, down at their phenomeno-
logical values is not an option. We see three legitimate choi@@suse a joint 3-flavor chiral
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Figure 2: Result of one particular “snapshot fit” of the ansatz (328 our “6 stout” dataset with a mass
cut My < 410MeV. For display purposes the data have been shifted danmof (4.2), thzs]phyS (top)
and[M ]phyS (bottom), and only the remaining dependencevg(top) or MZ, (bottom) is shown.
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limit value Fy, (ii) use anSU(3) chiral formula (e.g. the one at NLO witky, L4, Ls) (i ) use the
measured data (perhaps with@d(3) compatible interpolation, in any case this requiZgk

In the following we present the result of one particular fit based on elidicThis fit addresses
the full baryon octet and yields, in principle, eight sigma termg( ossy and ditto forA, 2, =).
Due to its preliminary nature, and because the comparison with the analytmaapps not ready
for other channels, we will just quote, ossn. Still, one should keep in mind that these numbers
are preliminary, and the assessment of systematic uncertainties is not ie¢fina

Having made these cautionary remarks, we are in a position to present ihtkéresult of a
fit of the ansatz (3.2-3.5) to our data. The paramdty;,dg, bp, br, o5, dss, Fo have been adjusted
by the fit (to reasonable values), whil&é,ga) = (2/3,1.2694) was held fixed. All together, this
is a fit with 7 free parameters to 40 datapoints with an uncorrelgfed 8.39. The resulting
uncorrelated?/d.o.f. ~ 0.25 seems plausible, since the four octet masses in each ensemble being
highly correlated will lead to an underestimate of the txd¢d.o.f. by about a factor four.

Note that this is the result of one “snapshot fit”, i.e. with a specific choitlesfitting window
[tmin, tmax] fOr each state, with one pion mass cut (hiebge<410MeV), and so on. This particular
fit yields oy = 55(10)statMeV, where the quoted error is only statistical, afRd~ 0.16. To get a
trustworthy estimate of the systematic uncertainty, one should considenaddsvariations over
the fitting range, the pion mass cut, the scaling behavior of cut-off termgharfdnctional ansatz
for the dependence qiM2,MZ), as will be briefly discussed in Sec. 6 below.

A technical point worth mentioning is the shift recipe applied to show the restiie fit. As
is clear from the discussion, the fit spans, for each baryon octet meatinr-dimensional surface
above thg M2, MZ) coordinates depicted in Fig. 1. However, because it is difficult to grajiic
display how 40 datapoints behave relative to 4 surfaces, we resort torte«dimensional plots.
We “shift” the data, along the surface established in the fit, to the physike 6dMZ and plot the
remaining dependence &2. In other words what is plotted in the first panel of Fig. 2 is [4]

dataMy7, 2Mg —M7) — fit (M7, 2Mg —M7) + fit (M7, [2Mg —M7]ohys) (4.1)

and a similar shift is applied, in the second panel, to bring all datapoints to a covahee ofM2
and depict the remaining dependenceM# It goes without saying that the recipe (4.1) does not
affect the fit itself, it just helps to display the result.

5. First experiences with analytic extrapolations

A complete analysis of a phenomenological variable at the physical magsmashinclude
a variation over the fitting ansatz that is used to interpolate or extrapolatettheldeahis aim we
include polynomial and rational ansaetze into our analysis, in the same waydid in [4].

This analytic approach builds on the fact that an expansion of QCD Grietttions about
the physical pointnfYs me"™") is completely regular. Therefore it makes sense to define dimen-
sionless expansion parameteys ~ (Mya—L%) /A, Ass~ (ms—mE™3)/A, and to express the
measured octet mass as a function of these parameters. At this point dettels Y prefer

A — ( aMy )2_ (M?{hys>2 Aee— ( aMss )2_ <M§Shys)2 (5 1)
m— a.Mths MthS ) SST a'MthS M);zhys :
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Figure 3: Result of one particular “snapshot fit” with the polynomialdarational ansatz (5.3, 5.4), where
the scale is set through tie The same shift procedure (4.1) has been applied to the sléiaFig. 2.

with X being the scale setting state over the alternative choice

p (M MV e 5.2
”_(aMx) _<M§hy5) ’ s (aMx> _<M§hy8) (5-2)

since in (5.1) all dependence on the simulat@aly, am is in the very first numerator, while in
(5.2) the numerator and the denominator of the first terms depend on themasses.

With such small mass parameters in hand, and bearing in mind that the rargelatsdM2
is much larger than the range of simulatéd, (cf. Fig. 1), we consider the polynomial ansatz

(aMy) = a MR 1+ Cir+ 0203 + Calss (5.3)

wherecs, ¢z, ¢z and the isolated (per couplingB, cf. the discussion in Sec. 2) are the fit parameters.
Obviously, with this choice one sets the scale through the nucleon mass, mbgnis that the
quantity that is effectively calculated & /My at the physical mass point. Likewise

-1
(aMy) = a-ME™®| 1 — dyA, — doAZ — dafss (5.4)

is a rational ansatz with similar characteristics. With any such fit in hand, moeg@ds along the
lines of (2.1) and evaluates the change of the fit function under a cludrighl;)?, (aMsg)2. With

10
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POLY: M <=0.402GeV, X’=[8.16,0.34], 0_ =0.052GeV

1.5
1.4} %: 1
. % m-
o 13 : |
O %][]
9: o < m
:/I\:: 1 27 * % : - 45 7
<_ . m & - -
EZ * EI] %}D -
1.1 - 1
1l I °© 3.304
% o 3.57
* 7 o 3.70
0.9 ‘ ‘ ‘
0 0.05 ,01 , 0.15 0.2
M~ [GeV7]
Tt
POLY: M <=0.402GeV, x°=[8.16,0.34], 0 =0-174GeV
1.5

1:3 b % t | l

B
zZ

| . |

* T Aﬁ%_ﬁ, - ,,,4'], 5%

oo T

0 3.70

0845 0.5 oé; o‘g 0.65 0.7

| | 2MZ-M? [GeV] ' :

Figure 4: Result of one particular “snapshot fit” with the global padynial ansatz, where the scale is set
through theQ, with M; < 410MeV. The same shift procedure (4.1) has been appliecttdata as in Fig. 2.
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a simple ansatz like (5.3) or (5.4) this can even be done analytically, giving

My ,OMy M2
= p— pu— _— 5-5
Om Mud Jmyqg ’phys ndM% [MN } physCl ( )
IMN , OMy M2
9 —om2 2N _ o[ Mss 5.6
OssN Me Jms Iphys SS0|\/|SZs [MN } phys 3 (5.6)
Ms OssN
= = 2C3/Cy - 5.7
Mud OnN phys 3/ -7

In the same spirit, one may consider a global polynomial or rational ansith fils the entire
baryon octet at once. In this case setting the scale through an octet megoudeiintroduce some
asymmetry, and it seems advisable to include one more fit t&Xus@ for this purpose.

With the same cautionary remarks applicable as in Sec. 4, we show somsHehéifs” to
the ansaetze (5.3) and (5.4) in Fig. 3. They yielgi = 53(14)statMeV and oy = 44(6)statMeV,
respectively, whith the quoted errors being statistical only. The resatjoint “snapshot fit” to
the full octet is presented in Fig. 4. Here, the scale is set througR thad the same pion mass cut
M;<410MeV is used as in Fig. 2. Bothyn = 52(10)siatMeV andyy ~ 0.13 are well compatible
with what was found in the CBXPT approach. In fact, with either fit the gieaess content is
well consistent with zero. Going back to Fig. 1 and the bottom panel of FigFg. 4 it appears
that this is linked to our strange masses being slightly above the physicdlvahge. Likely, with
simulated values of @2 —M2 covering the entire range between (sayd ®e\? and 065Ge\?
[such that the physical value of4¥ Ge\? would be the center of this range] one would have a
better chance of determining the slope. Note that for the other octet memlzesiugton looks
better, since their slope in tlesdirection seems to be larger.

6. Preliminary results and outlook

Given the discussion in the previous two sections, it is clear how we shongded to come up
with a valid determination of the nucleon sigma terms (or equivalently,Qf yn) and analogous
sigma terms for the baryon octet states.

We have implemented several functional ansaetze to describe the depemdehe baryon
state on(M2,M2). Both the CBXPT ansatz tested in Sec. 4 and the family of polynomial and
rational ansaetze tested in Sec.5 yield reasonable results for the sigmddadris the former
case also for the low-energy parameters). With such an interpolation @) baa may compute
the derivatives with respect td2, M2, at the physical mass point. In some cases this is a simple
function of the fitted parameters. In other cases it proves more convémmraluate the derivatives
with respect to the measuréti;, Mk and to convert via

dMy IMN(Mz, Mk) IMN (M, Mk ) IMZ
~M2——> = Mi— o= + M ’ p
O (Muyg) TAM2 | Mgsfived m oM2 +Mn 0M|% OM2 | Mssfixed
B %0MN(MH7MK) MZ IMn(Mz, M) (6.1)
2 dMn’ 4MK aIVIK .
dMy IMy (Mg, Mk ) IMZ
(M) ~ 2M2 = 2M2 : >
OssN(IMs) S Msgs M fixed ss 0M|% dMsZs M,fixed
_ MZ& IMn(Mn, M) (6.2)
Mk OM '
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where again everything is evaluated at the physical mass point.

What remains to be done is the systematic variation of all ansaetze over thebofiiing
window, over the pion mass cut, and over the scaling pattern of potentiattitstion effects. Of
course, all of this should be done @41000) bootstrap samples to assess the statistical uncertainty,
but this part is standard. This kind of machinery was used in Ref. [4M® @reliable assessment
of both the statistical and the systematic uncertainty of the observable ofint&ef ).

For the pion-nucleon sigma term in MeV units our fits usually yield values in therlffties
with typically about ten MeV statistical error. With hindsight we thus anticipaté ttia final
result will be in the range oy ~ 50(10)(10) MeV, where in each slot only one digit is meant
to be significant. Regardingsgy Or yn the situation is less convincing. With the “6 stout” dataset
depicted in Fig. 1 we obtain, with each ansatz, large statistical errors andegigible spreads
among the ansaetze. Currently, a value ke~ 0.1(2)(1) seems appropriate, which would not
even tell whether there is a non-zero strangeness content at all. @emtounderstanding suggests
that, in order to obtain a substantially more precise value, one would havd siradlation points
with significantly smaller strange quark mass than we have right now.
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