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1. Introduction

In Quantum Chromodynamics, the current theory of the strong forcey states do not ap-
pear directly in scattering experiments, but only indirectly in the behaviothve$cattering cross
sections of observable particles. This is because these states, knogsoaances, are unstable
and decay in a very short time relative to the scattering experiment. Extralsérdecay widths
and masses of these states is thus an important theoretical challenge.

Lattice Field Theory provides a possible way of extracting these resernzarameters in a
non-perturbative fashion. The typical method for extracting particle esdadattice field theory is
to study the decay of a correlator with the same quantum numbers as the parggtstion. The
large-time behaviour of the correlator is then

lim C(t) = Ze " (1.2)
wherem is the mass of the lightest particle with the chosen quantum numbers, whicle@a b
tracted by fitting the correlator. This method however will not work for neswes. By virtue of
being unstable, resonances are above the multiparticle threshold in theiretlaaad never domi-
nate the behaviour of the correlator in a simple manner. Fundamentally nessnare not energy
eigenstates of the Hamiltonian, but rather poles of the S-matrix and so atg dynamical phe-
nomena.

Given their relation to dynamical scattering processes, resonancagiera can be found
using the scattering phase shiitp). The difficulty lies in obtaining information aboudt(p) on
a Euclidean lattice. In Ref][1] it was discovered that there is a connectitwelen the behaviour
of the two particle energy spectrum in finite volume and the scattering phéds&gh). Hence
provided one can accurately determine the energy spectrum it shoulosbible to obtaird(p)
and through it the resonance parameters. Recently another methocehgsrbposed in Ref]2].
This method takes the intuition gained from Luscher’s method to construabalpitity distribution
which measures the relative frequency of energy levels in the interacs®(cesonance present)
and the noninteracting case (no resonance); we will refer to this methbe listogram method.

It can be shown that the parameters of this probability distribution are foedtally related to
the parameters of the resonance. Furthermore, the method provideslatatu The resonance
should manifest itself as a peak in the distribution.

Ouir first discussion on this topic, with an historical introduction and a basirétical back-
ground, can be found in Ref][3]. In this work we aim to compare and ashthese two methods.
In particular we analyse how accurately resonance parameters camdiderl using both methods
and also the ambiguity in applying the two methods. A first attempt to test the histogedhod
on a simple one dimensional model can be found in Ref [4].

2. Theoretical background

2.1 Two patrticles in a box

In the continuum, two identical non-interacting bosons of nrmagsharacterised by a relative
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momentump, in a box of volume/ = |‘|i3:1 L;i, have a total energl given by

E=2/m+p2; 2.1)

where due to the finite volume, the momeptare given byp; = ZL—’iTni with nj € Z. On the lattice
the space-time discretization can have a strong effect (see Flgure Ijiaujaa when the volume
is small (large momentum) and; is big. The correct expression for the simplest discretisation of

the free scalar field is 1
—Acinkl| )
E = 4sinh [2\/@+p] , (2.2)

wherep; = ZsinL—’Tni. It is also valuable to use this expression to describe the energy of itigrac
particles as we will show.

In a general case such as QCD, wherr o o o
an expression like Eq. 2.2 is not available, ml;: 0.46
we need to determine the non-zero-momentu
single-particle energy levels numerically and.of
then, to determine the two-particle energy_ |
spectrum, simply multiply the results by &-3
factor of two. B

We will focus on the case of a cubic >
lattice, characterised by a single side Iengthmi
L; moreover, in a cubic box i? = y3 , ? S ——
is fixed, degenerate energy levels for dif- L
ferent values ofy; can appear. Figure 1: The total energye for four different levels in the

In Figure[l we show a plot of the twocontinuum (black lines) and in the lattice (red lines) case
formulas where it is evident that for smallversusL.
volume L < 15) and a mass),; = 0.46 the
two spectra are very different; therefore we cannot use the contifaumula to describe our
Monte Carlo results.

20

2.2 Avoided level crossing

Let us introduce another partictein the box (at the moment, not interacting) with mags
we are interested in studying tkekastic scattering between the particles therefore we impose
the constraint B; < my < 4my. In Figure[R (Left) theo energy level is the horizontal line that
intersects the two-particle levels at various system dizes

In Minkowski space if we introduce a three point interactmrnrt between the fields, the
can be unstable and decay into tweparticles. In Euclidean space and in a finite volume the
scenario is different; because of the interaction, the energy eigenatatasmixture oo and 2t
Fock-states and they are all stable. The mixing is manifested in avoided tegsirgs (ALCSs) in
the energy levels as shown in Figyfe 2 (Right).

2.3 Luscher’'s method

The best known method for analysing resonances was proposedsbhari(Ref[[p]). This
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Figure 2: (Left) The spectrum of a system of two non-interacting jgéeti of massn; = 0.4544 worked
out using Eq2; the horizontal line describes the particht rest with massn, = 1.3517. With these
parameters the intersection betweeand the two-particle leve® = 1, i.e.(1,0,0), is set aL. = 12. (Right)

Avoided level crossings where on the (Left) there were ggetions betweea and 2.

method involves using information on the scattering phase shift. Since thersgptibase shift
contains information on resonance parameters this provides a way ta éxéraesonance mass and
width. The scattering phase shift itself can be obtained using the relatiofostrig in (Ref [1]).

In essence, this relationship provides a mapping between the values ofdfpatticle energy
spectrum in finite volume and the scattering phase shift in infinite volume.

The relationship is proven first in non-relativistic quantum mechanicstitliogs in quantum
field theory as the relativistic case can be cast in a non-relativistic form,thatiBethe-Salpeter
Kernel playing the réle of the potential. This is achieved by means of ante#eSchodinger
equation, first constructed in (Réf [6]). The precise relationsHip is

o(p) = —¢(k)+m, (2.3)
/2
tan( (k) = (%) . 2.4)

wherepis the relative momentum between the two pio#$s(1;0?) is a generalised Zeta function,
given by

2t - 5 09

, 25
WGs (P =) o

whereYis(6, @) are the spherical harmonics. §q]2.3 is known as Lischer’s formula.
To obtain resonance parameters using this relationship one proceetls\as:f

1. Through Monte Carlo simulations, obtain the two particle energy sped(in) at different
volumes;

2. Through dispersion relations obtain a momentum from the energy spe@i(L);

1in truth the relationship is more general than this, the formula quoted héetise spin-0 channel, which is the
only one relevant here.



Extracting resonance parameters from lattice data Pietro Giudice, Darran McManus

3. Through Eq[ 2]%n(L) gives a value fod(pn(L));

4. By repeating this procedure for several energy levels and volumespbtains a profile of
3(p);

5. This profile ofd(p) is then fitted against the Breit-Wigner form for the scattering phase shift
in the vicinity of a resonance:

[ Ap?+AMZ — M2
~ 1 s g
o(p) ~tan ( Mol o )

This fit should give the resonance més and widthl 5.

(2.6)

The work in this paper applies this method to the @@) model in the broken phase and also
compares its performance against a more recent proposal.

2.4 Histogram method

An alternative method to determine the parameters of a resonance is baseédferent way
to analyze the finite volume energy spectrum (REf[2]). The basic idea is to constreiprrobability
distributionW(E) according to the prescriptions:

1. Measure the two-particle spectriq(L) for different values of. and forn=1,--- N levels;

2. Interpolate the data with fixenlin order to have a continuum functidgy(L) in an entire
rangeL € [Lo,Lm];

3. Slice the intervalLo,Lm] into equal parts with lengthL = (Ly — Lo)/M;
4. DetermineE,(L;) for eachl; (i=0,---,M);

5. Choose a suitable energy interyBhin, Emax] @and introduce an equal-size energy bin with
lengthAE;

6. Count how many eigenvalu€&s(L;) are contained in each bin;

\'

. Normalize this distribution in the intervgimin, Emax]-

Actually, the distribution considered in Rdf [2]W/(p) but this does not have an important
effect on our analysis; as a matter of fact, the relation between them is:

wip —we) (5 (2.7)

where the correct dispersion relation we should use i Ef. 2.2; the multipdicatim will not
modify the Breit-Wigner shapeear the resonance.

Itis possible to show that the probability distributd{p) is given byw(p) =c3N_, [p,(L)] "
and differentiating the Lischer formula with respedt t@ turns out € is a normalization constant):

2o’ (p)

@ (an(p)) (2.8)

c N
W(p) = o Zl Ln(p) +
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The authors of Ref[J2] introdudéb(p), which is determined by E{. 2.8 wiih(p) = 0 andLn(p)
corresponding to the free energy levels: they show that in order tcestitiie background (free
particles) it is convenient to consider the subtracted probability distribWign =W (p) —Wo(p).

Using convenient approximations in the Luscher formula and in the limit of infimiteber of
energy levels (infinite volume) it turns out:

1/90
wip)-wh(p) 0 (2P 8 ) 29)

This last quantity is determined (p) alone and close to the resonance, assuming a smooth
dependence op for the other quantities, it follows the Breit-Wigner shape of the scatteriogscr
section with the same parameters:

1
" [E(pE-MgR Mg T2

(2.10)

In Ref [B] this method is tested osynthetic data produced using the Liischer formula by
experimentally measured phase shifts. The main task of our work is to test ttiisdnen an
effective field theory where a resonance emerges, producing déd#ibg simulations.

3. The model

The model we have used in our simulations is essentiall{Dii@e model in the broken phase.
This model has previously been used to test Liischer's method [[RefTAp Lagrangian is the
following:

o %amamM(qqz—vz)z—nﬁvcm, with i=1,2,3,4. (3.1)

The term proportional tay is introduced to break explicitly the symmetry and therefore to give
mass to the three Goldstone bosons. To understand the meaning of the tetins parameters in
the Lagrangian, we first introduce the new fietdandp; (with the constrainp;p; = 1):

@=(v+o)p, withi=1234; (3.2)
then, we expand the potential around the classical minimggm= v? (using alsqo;dp; = 0):
1, 1, 1
£ = év o0pidp;i+ §U 2pidpi +§0000+ voopidp,
+ A0*+4v2A a2 +4vA 0° —mBv2ps —mivops . (3.3)

The fieldo is clearly related to the massive field whereas the four constrained fietals related
to the three “pions”. There is an easy way to see this based on the treafrttenhon-linear sigma
modef; we introduce the pions using an elementof(2): U = exp(%rrjoj), whereg; are the

2See for example Ref]8] Sec 2.4.3.
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three Pauli matrices anfis the pion decay constant. It turns out that
Lt (au9,U7 0,109y 10
éTr( Wouh) = = 5 durourm. (3.4)

On the other hand, we can introduce an elemed.bf2) by U = ps+io;jp;, with j =1,2,3 and
the constrainpZ + p;; = 1; in this case we have:

1

Comparing Eq[ 3]4 and Efj. B.5 it turns ofit-{ o):
4 1 3
izldpiﬁpi o~ ﬁgldnjanj : (3.6)
Using the same previous approach and the relatiod FrUT) it is easy to show that
Pa=— 212711711 + congt (3.7)

We can rewrite the Lagrangian of §q.]3.3 using Eq.H{3.5-3.7 and introdipingT ¥:

1., .. 1 1
L = Ednjdnj 2,29 20707 + 20000+ 00Tt 0T
m ..
+ Ao+ 4vAA 0% +ava ot 4 2 mzrqrrJ SO . (3.8)
2v

In this expression, it is now evident th&f are the pions with mass,; ando is a massive field
with massmg = 2vv/2A. ltis interesting to note there are two three-point interaction terms, both
inversely proportional to.

4. Monte Carlo simulation

The theory described by the Lagrangian Eq] 3.1 was simulated using aelaxation algo-
rithm for the first three fields followed by a Metropolis update to guaranteestfodicity and a
Metropolis algorithm for the fieldy.

4.1 Single and two-particle spectrum

In order to determine the single particle spectrum we first introduce the Ifastisier trans-
form (PFT) of the four fields:

@) = Z‘R (Xt)e P, pi=—n;, n=0,--L-1. (4.1)
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The single particle mass is extracted from the zero momentum correlation fuittio0):

Ci(t) = <fﬂ(ﬁ,t)§ﬂ(—ﬁ»0)> ) (4.2)

in particular withi = 1,2, 3 we can determine the mass of tlygarticles; withi = 4 we extract the
mass of theo particle. Because of the different way we update the four fields, it tomb$hat the
masany is determined with a higher precision themp; actually, this is not a real problem because
we are mainly interested to a good determination of the “pion” mass.

The two-particle spectrum is measured by introducing operators with zedontomentum
and zero isospin:

3
On(t) = _;é(ﬁ,mﬁ(—ﬁ,t) : (4.3)

we take in accourl¥l — 1 different operators, correspondingto=0,1,---,N— 1. AN-th operator,
that clearly has the correct quantum number, is the PFT of the diglakctually ¢) with g = 0.
To determine the energy levels we use a method, introduced in[Ref [9)] basa generalized
eigenvalue problem applied to the correlation matrix func@giit) = (O,0;), i.e. a matrix whose
elements are all possible correlators betweerNioperators.

4.2 Numerical results

In order to test the applicability of the two methods for different widths obmesice, we
consider three different sets of parameters. The first set is chasadtdyv = 1.0, A = 1.4,
m; = 0.36. We tuned these parameters to have the intersection betweenehergy level and
(1,0,0) two-particle energy level arourld= 12. The physical mass for the pion turns out to be
mﬂh =0.460(2). The spectrum (the first 6 levels) was determined for different volugied (< 19)
and the relative error works out to be in the range 0.5% - 1.0% (see Hdiueft)).
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Figure 3: (Left) Spectrum of the theory for different values of the wolke for the following simulation
parametersv = 1.0, A = 1.4, m; = 0.36. The dashed lines describe the free two-particle spactfRight)
The interpolated data using a polynomial.

First of all, we interpolate the data for each level using three differelghpamials of order 3,
4 and 5 in order to have a relation between the en&rgyd the side box in the entire interval
8,19 and to provide a way to evaluate the systematic errors in our final resultigiiref (Right)
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we show one of these interpolations. In Figuies 3, the dashed linestitlegthe free two-particle
spectrum are calculated using Hq] 2.2. Here we note that themassEq.[2.2 is not thévare
mass. The value measured on the lattig8 = 0.460(2) is taken as thehysical value; the relation
between them is well-approximated by = 2sinh(my;/2).

This free spectrum is used to deter-
mine the distributioMp which is then sub- -
tracted tow that is obtained from the in-
teracting spectrum. It is important to note
that if the number of levels considered to ..
plot W in the interacting spectrum ais,
then the number of levels we have to con-
sider in the free spectrum to determig

2e+02-

frequenc

le+0Z-

Oe+0Q

-le+02-

are justN — 1.
Using the three previous polynomials '2“0‘1' T OUOTTOOTTVUTTURTIUORTIOR IO
we are able to produce a large number of mass

data (we fixAL = 0.001) that we can then rigure 4: The probability distributionV = W — W ob-
use to get the probability distributioW/ tained by data from Figurg 3.

described in Se 3.4 with the correspond-

ing systematic errors; fixing the bin width &E = 0.005 we obtain the histograifv of Figure[$.
Note that to geW bothW andWg are worked out from the same range witke [8,19]. The er-
ror bars in Figurd]4 are the results of the systematic errors coming fronistegfamwW and the
statistical errors coming from the histograg.

Clearly, the shape of the histogram in Fig[ire 4 is far from the Breit-Wigmape; the reason is
related to the fact we are considering only six energy levels but the ciackiof Se 2|4 are true
only in the limit of an infinite number of levels. Moreover a lot on jumps and spikegresent.
Our task is now to try to improve this result in order to get more information framraw data.

We investigated the origin of the spikes
and we understood they are related to a 30— - - - - - -
“wrong” backgroundig. It is easy to see
that the spikes appear every time there is
the intersection between the six levels of 20
the interacting spectrum (or of the five lev- £ -
els of the free spectrum) with the extrem- .
ities of the volume rangeL.(= 8 andL =
19). Near those two extremities we have o -
to be careful with what is the correct back- 8 0 12 14 16 18 20
ground; Figurd]5 shows a corrected back-
ground subtraction. In order to correctlyrigure 5: Energy levels of Figurg] 3 (Right) with the cor-
subtract the free background, we lengtherect free two-particle spectrum background.
each free spectrum line. This is done so
that the extremity of that line has an energy equal to that of the extremity oftdradting spectrum
line closest to it. In this way all interacting lines are subtracte correctly rétlerthe subtraction
being affected by the limit of the volume range that we are actually using inmutaions. Using

2.5+
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this procedure to determinp we get thecorrect histogram of Figur¢]6 (Left). Unfortunately, in
Figure[b (Left) we continue to see a jump Br= 1.35; the origin of it can be understood looking
at Figurd b. There are two extremity lines, oné at 8 and one at. = 19 (both aroundE ~ 1.35),
that are without a “background”; actually, in this case the backgroutibisesonance itself we are
looking for. Therefore, there is no way to avoid the presence of this jueopuse we do not know
anything about the resonance; the only thing we can do is to completely eXctud our analysis
those two levels, hoping that the resonance can appear. In Fjgurer)Rishow the probability
distributionW in this last case; now clearly a Breit-Wigner shape appears.

It is now possible to fit these data to Eqg. 2.10 to determine the parameters ekteance;
applying a sliding window procedure around the peak, they turn out tdviee= 1.330(5) and
s = 0.10(5). We have simulated the theory with a second set of parameters, cord@spom a

5+ QT 1e+07—r

4e+02-
Oe+0Q

frequen
frequency

2e+07- etz

1le+02-
-2e+02Z- B

0e+00 L L L f 1‘ L L 1 L L L L
1 11 1.2 1.3 14 15 1.6 1.7 1.8 1 1.1 1.2 1.3 14 15 1.6 1.7 1.8
mass mass

Figure 6: (Left) Probability distributiorW obtained by data from Figufg 5. (Right) Probability distrib
tion W obtained excluding from the analysis the two levels thatigufe [$ are without a corresponding
background.

larger width: v = 1.0, A = 4.0, m; = 0.56. In this case, we tuned them to have the intersection
between theo energy level and1,0,0) two-particle energy level around = 8. The physical
mass for the pion turns out to el = 0.657(3). In Figure[} (Left) we plot the spectrum for

6 < L < 20 for the first six levels; the relative error varies in the range 0.05% %0.% we
repeat all the procedure as described before (in particular we exthedtwo levels which are
“without” background) we get the histogram of Fig(ire 7 (Right); also in¢aise we can clearly see

a Breit-Wigner shape and we can fit these data obtaining the following pteemnid, = 2.01(2),

s = 0.35(10).

Finally, we have run a third series of simulations with parameters1.0, A = 2000, m; =
0.86. They have been tuned to have the intersection between émergy level and2,0,0) two-
particle energy level arounid = 10. Because in this case we are considering higher momentum,
we expect the width of the resonance is larger then the previous casélsis kcase we take in
account 13 levels to describe better the shape of the resonance. he [Bigueft) the spectrum
for 6 <L < 15 is plotted; the relative error varies in the range 0.15% - 0.4%. The @hysEss
for the pion turns out to bmﬂh = 0.938(3). Unfortunately, as it is shown in Figufg 8 (Right) the
probability distribution plot is flat, i.e. no Breit-Wigner shape emerges. It @rdleat in this case,
the only way to determine the parameters of the resonance is to increagiecally the number

10
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Figure 7: (Left) Spectrum of the theory for different values of thewmle for the following simulation
parameters. = 1.0, A = 4.0, m; = 0.56. (Right) Probability distributiolV using the correct background
and excluding the two levels that are without a correspantackground.
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Figure 8: Like Figure[} but with simulation parametens:= 1.0, A = 2000, m;; = 0.86.

of measurements and consequently to decrease the relative errorspedhreis determination.
In Table[1 a summary of our results for the three sets of parameters ave.sho

Relative error in E(L)| Mg 0(Mg)/Mg | T 0(Fg)/Ta
0.5%-1.0% 1.330(5)| 0.4% 0.10(5) | 50%
0.05%-0.2% 2.01(2) | 1.0% 0.35(10) | 28%
0.15%-0.4% - - - -

Table 1: Results for the three sets of simulation parameters witledneesponding relative errors.

In applying Luscher’'s method to the data one only needs the original rayttiare is no need
to fit it to a polynomial expression as in the histogram case. The first stepcanteert the data
on the energy spectrum to data on the momentum spectrum. This requirepersidis relations.
However should it be the lattice or continuum dispersion relations? The laisigerdion relations
are more natural, since they suppress lattice artifacts, but results weaieeabfor both below to
emphasise how much more effective they are. In order topyéle) and Eq[23 to obtaid(p),
knowledge ofp(k) is needed. The main difficulty here is the cumbersome definitia#efl;q?).

11
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] =
1 200

Figure 9: (Left) &(p) using Lattice dispersion relations at:= 1.0, A = 1.4, m; = 0.36. (Right) Same
parameters, but with continuum dispersion relations. Blatie with our approximation.

Not only that, but as mentioned the summation expansion given above doegenocconverge in
the region required. A more convenient definition is an integral reptasen of 2js(1;9?) given
in Appendix C of Ref[[[L]. This expression can be used to numerically atalifjs(1;g%). Some
data on the values a@fi(k) can then be obtained from Hg.]2.4. We fitted) against these values
to obtain an approximation of

@(K) ~ (—0.09937)k® + (0.47809 k"
+(—0.62064 k" + (3.38974 k>

(4.4)

The error between this approximation apk) is negligible compared with other errors.

From here we use E{. 2.3 to obtain a profiledgp). For the narrow case one can see the
difference between use of the continuum dispersion relations and the Bigmersion relations
in Figure[9. The lattice dispersion relations provide a tighter fit of the datayedisas having

Results
Parameters o(K) TIK?
V=10,A =14 | Mg =1.352) | My = 1.36(4)
Mo =0.1158) | [, =0.17(2)
V=10,A=4 | Mg=2032) | Mg=22(2)
Mo =0.352) | Mo =0.42(5)
V=10,A =200| Mg =3.1(7) | Mg =3(1)
Mo =12(5) |lo=2(1)

Table 2: Resonance mass and decay width using two different appetiins forg(k).

smaller errors. We also compared the use of the traditional approximatiptkof= k2 with
our approximation. After fitting, the results for the resonance mass aray dedth in the two
approximations are (both using lattice dispersion relations) shown in ffable 2.

The errors are smaller when the approximation of[Eq. 4.5 are used, femitidor the broad
resonance. It should also be noted that the two approximations effdetdliesonance parameters

12
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differently. The dispersion relations have a more direct effedignwhile the approximation of
@(K) has a greater effect dn,. This is because a cruder approximatiorpk ) effects the profile

Results
Parameters Luscher's Method histogram method
v=10,A=14 | Mg =1.35(2) Mg = 1.33(5)
Mo =0.1158) Mo =0.10(5)
v=10,A=4 Mg = 2.03(2) Mg = 2.01(2)

Mo = 0.35(2) [, = 0.35(10)
V=10,A =200 | Mg = 3.1(7) Mg = N/A

Table 3: A comparison between the Lischer and the histogram method.

of the scattering phase shift, which is related to the decay width. Thesksreaggested it is
optimal to use the lattice dispersion relations and our approximation.

4.3 Comparison between the two methods

The results for Lischer's method compared with the histogram method@se s Table[B.

Luscher’s method gives smaller errors
than the histogram method, but the results 20—
are broadly consistent. Liuscher's method
manages to provide some estimate on the 1o
width of the resonance in the broad case.

The broad resonance becomes a prob-% 0.0
lem for the histogram method because there
is no obvious peak to indicate the reso-
nance mass (and hence no width of that
peak to determine the decay width). One *° 05 i
would need very precise data in order to
avoid a washing out of the structure of thesigure 10: Inelastic data with Lischer's formula. For
histogram. Liischer’s method also becomé® case ofv = 1.0, A = 1.4. (Onset of inelastic region
more difficult to apply in the case of broadmarked).
resonances. In the case of a broad reso-
nance the profile od(p) is quite flat, hence a large range of parameters will be capable of fitting to
the profile. Again an accurate determination of the energy levels is redqoiggtermine the pro-
file precisely enough so that this is prevented. Considering the amourdrkfngcessary before
one can use the histogram method (as detailed above), Liischer's metiwdiderably easier to
apply, provided one has a good approximationpok ). However, the histogram method can be
used as a visual tool for spotting the resonance.

One restriction of Liuscher’s formula is that it only applies in the elastic reglanexample
of what happens in the inelastic region is provided in Figute 10. It is plestibt the histogram
method will provide a means of determining the presence of a resonanceimetastic region.
Certainly a histogram can be constructed in the inelastic region, the onlyuttiffis that with the

-1.0-
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inapplicability of Lischer's formula it is unclear that the parameters of thimgiam will have
any relation to those of the resonance.

5. Conclusions

We have compared and contrasted the Lischer and the histogram mettsclses method
appears to both easier to apply and give smaller errors, however thgraistonethod does give
results consistent with Lischer's method and does indeed visually indieapeebence of a reso-
nance.

There are two major difficulties with both methods. First for broad res@satiee relevant
structure is washed out to some degree. For a histogram, the peak is lvaratéo while for the fit,
the profile of the phase shift is poorly constrained. Secondly there isefestic region. Lischer’s
formula cannot be used there. The histogram method can be applied tatahdutathere is no
argument that this is a sensible thing to do. There is also a difficulty in the @jasase, relevant
to QCD, which has not been examined here. In the model above the nesdsalearly present in
the channel, since this is an explicit feature of the Lagrangian of the madgerieral however a
resonance may not be so obvious and there is no reason a priori ttt &xgit will have a purely
Breit-Wigner form.
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