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The signal to noise ratio of baryon two point functions grows exponentially with Euclidean time
hindering reliable extraction of the energy levels of the system. The problem becomes more acute
in the case of two or more baryon correlation functions. For this reason special care is needed
in both constructing, and analyzing two point functions of multi-baryon systems. In this talk
I discuss methods for extracting the energy levels associated from two point functions for two
baryon systems.
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1. Motivation

Lattice calculations of properties of two baryon systems are now beginning to receive seri-
ous attention. The current goal of such calculations is obtaining from first principles the elastic
scattering phase shifts of two baryon systems as well as the spectrum of their bound states. The
basic approach for such calculations is very well known [1]. However, only recently computational
resources are beginning to become sufficient for tackling the problem.

The main computational task is to obtain the spectrum of a two baryon system in a finite box.
Given than the characteristic scales in nuclear physics are low relative to the 1GeV scale of QCD
interactions, we need to obtain the finite volume energy eigenstates of the two particle system with
rather high precision. In most cases the effects of baryon-baryon interactions are of the order of
few MeV. For this reason one needs very precise lattice calculations with very good control of all
systematics in order to have reliable determinations of baryon-baryon scattering phase shifts from
Lattice QCD. Furthermore, the spacing between neighboring energy levels of the two particles in
the box is rather dense further complicating the extraction of the ground state energy. In order
to understand the scale of severity of this problem one can assume for that the interaction energy
between two identical baryons is negligible. In this case the two particle spectrum in the box would

be
2
ey =2y (2) a

where m is the mass of the single baryon, 7 is the wave number vector 7i = (n,, ny, n;) for the relative

momentum of the two particles and L is the size of the box. In order to isolate the ground state
energy using single exponential fits one would have to calculate the correlation function at time
separations Ar much larger that the the energy level separation AE. If we assume that the relative
contamination from excited states should be smaller or equal to 1072, and that all states couple
to our interpolating fields with roughly the same weights, we can estimate the required A¢ using
typical values for m ~ 1GeV and L ~ 3 fm. In Figure 1 we plot the estimated time separation At for
suppressing the contamination from each of the lowest six excited states to the ground state by a
factors of 1072, From these considerations separations of about 6 fm seem to be required to achieve
an isolation of the ground state for a two baryon system. Recent lattice calculations of rather high
statistics [2] demonstrated that it is hard to resolve the signal for two nucleons for distances more
than 2fm. For baryonic systems for sufficiently large time separations the noise to signal ratio
grows exponentially due to the fact that pions are much lighter than baryons [3]. For these reasons,
it is clear that special care has to be given for reliable extraction of the ground state and low lying
states of two baryon systems.

Fortunately, the situation is a little better than the toy example seems to imply. This is because
in some cases one can suppress the coupling to excited states using carefully chosen interpolating
fields. Generally, smeared sources seem to accomplish this suppression for single particle correla-
tion functions. However, as it was shown in [4] appropriately used variational methods can have
a larger effective energy gap AE that determines the relevant time separation Ar for suppressing
contaminations from excited states. In this approach one uses a basis of interpolating fields and
constructs a symmetric matrix of correlation functions. Then a generalized eigenvalue problem
determines the energies and the “optimal” interpolating fields for the lowest few energy levels that
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Figure 1: Required time separation for suppressing the contamination from excited states to the ground
state by 1072

couple to the original basis of interpolating fields. From Figure 1, we can estimate that if the lowest
six states of a two baryon system are captured in the basis of interpolating fields we use, then we
have a hope of isolating the ground state at time separations of 1 fm or so. At this time separation
it has been shown [2] that the relevant correlation functions can be computed reliably.

Unfortunately, constructing a large symmetric matrix of correlation functions for two baryon
systems is computationally expensive. The plane wave two particles interpolating fields are known
to couple well to the scattering states of weakly interacting two particle systems [1]. However, these
interpolating fields require some variant of “all-to-all” quark propagators in order to be constructed.
For this reason we would like to explore the possibility of a variational-like approach that works
with a non-symmetric matrix of correlators, as those used in [2, 5].

2. The non-symmetric generalized eigenvalue problem

Lets now assume that we have a non-symmetric matrix C;; of correlation functions is con-
structed from two sets of interpolating operators: ¢&; are the annihilation operators and &, are the
creation operators.

Gij(t) = (6:(1) 7 (0)) = (0|Gre™™ G} |0), @.1)

where A is the Hamiltonian. This matrix can be decomposed as a sum over all energy eigenstates
of the Hamiltonian A

Cij(t) = ilz,-,,z;fne—’fnf (2.2)
n—
The eigenstates of the Hamiltonian |n) are
Hin) = Eyln) , Zin = (0| 6;|n) . Z;, = (n] 6] |0) (2.3)
In matrix form the spectral representation of the correlation function matrix can be written as

C(t)=ZAZ", (2.4)
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with
A =diag(e B e B ..) = diag(A (1), Aa(2),---) . 2.5

Ai(t) = e Bt (2.6)
In the remaining we will assume that the energy levels are ordered
EI<E,<Es3--- 2.7)

Degenerate energy levels introduce complexities that we will avoid for now.

If we now assume that the system has N energy levels and we use a set of N linearly inde-
pendent interpolating fields ¢; and N linearly independent interpolating fields &; we can compute
all the energy levels from the correlator matrix C;;. One way of doing this is by constructing two
matrices Q and O so that

o=@ , 0=Z"H" (2.8)

This is always possible since Z and Z are N x N matrices with a non-vanishing determinants. The
fact that &; and & are linearly independent guarantees that det(Z) # 0 and det(Z) # 0. Using this
property we can now extract the energies by

Q'C(1)0=A(1) (2.9)
It turns out that Q is a solution to a generalized eigenvalue problem:
C(1)0 = OFA(r) = ZAlto)Alt —1o) = ZA(10)Z' OA(t —1o) = Clto) OA(t —10)  (2.10)

Note that the factorization of A(¢) = A(tp)A(r — o) will not hold when periodic images need to be
included due to boundary conditions in the finite time direction. Equivalently the columns §; of the
matrix Q are the generalized right eigenvectors that satisfy

C(t)gi = C(to)giAi(t —t0) (2.11)
Similarly the matrix Q can be determined as the solution of the left generalized eigenvalue problem
Q'C(t) = At —1)Q"C(10) (2.12)

Equivalently the columns ¢; of the matrix Q are the generalized right eigenvectors that satisfy
4;C(1) = Xilt —10)4;Cl(to) (2.13)

Given the above discussion the algorithm for determining the energy levels contributing to the
correlation function is simple. We first solve the generalized eigenvalue problem of Eq. 2.10 and
then determine the energy levels by taking the logarithm of the eigenvalues A;:

1 Ai(t —1o)
E; = Tlog <7L,~(l—|—17—t0)> (2.14)

In this simple example the answer is independent of 7y and ¢ and is exactly the eigenvalues of
the Hamiltonian that contribute to the correlator. It can be shown that deviations from this ideal
case, where the basis of interpolating fields has dimension equal to the dimension of the space the
Hamiltonian acts on, behaves similarly to the case of symmetric correlation matrices [6].
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3. Construction of non-symmetric basis of interpolating fields

The NPLQCD collaboration has been using correlation functions for two baryon systems that
are constructed from a single smeared quark source resulting a single &'" creation interpolating field
for each channel. Having computed the smeared quark propagators, one can then build several
annihilation interpolating fields, including the plane wave two particle states that would be the
eigenstates of the Hamiltonian in the absence of interactions. This matrix of correlators is non-
symmetric due to the difference in creation and annihilation basis both in kind and in size. Yet, we
can still proceed with a variational-like procedure like the one described in Section 2. From our
initial basis of interpolating fields we can generate a new larger set by using time translation. In
Euclidean space we translate forward in time the annihilation interpolating fields and backward in
time the creation interpolating fields as following:

Oi(t + mt) = "™ gre"™H 3.1

Oi(t —mt) = e "™ g™ (3.2)

where 7 is a choice for a time step and m is an integer. Using time translation one can construct
several new interpolating fields by increasing the integer m. With this in mind we can always take
a correlator matrix with un-equal dimensions and convert it to a square matrix by sufficient number
of time translations of the existing interpolating fields. For doing so, we only need to time translate
the already computed matrix of correlators. This is because

<O|ﬁ,~(t—|—mr)@(t—nr)\0> :C,'j(t+nr+m‘c) . 3.3)

Using time translation we can now work with a new interpolating correlator square matrix K; jl.

With this enlarged time translated basis of interpolating fields we now have a square matrix
of correlators from which energy levels can be extracted as described in Section 2 by solving the
generalized eigenvalue problem

K ()G = K(t0)Gihi(t —t0) , qiK(t) = Ai(t —t0)q} K (to) (3.4)

One complication that arises is the fact that the interpolating fields we end up with are not linearly
independent. For example, if in the time range we work in, the size of the resulting basis is larger
than the number of energy levels significantly contributing to the correlators, then the interpolating
fields are not linearly independent and one of the basic assumptions in Section 2 will be violated.
This problem is avoided by using singular value decomposition (SVD) to solve the generalized
eigenvalue problem. If we consider the SVD of K(#) then

K(to) =UxV’ (3.5)

with § = diag(o;) a diagonal matrix with the singular values of K(fy) in the diagonal and U and
V unitary matrices. We now define S’ as the sub-matrix of S containing only the non-vanishing
singular values (in practice we include the singular values o; that are larger than a pre-decided

! As it will be obvious from the subsequent analysis the matrix K could remain non-square. The resulting generalized
eigenvalue problem can be solved with using SVD.
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Figure 2: Energy levels of the proton-proton system int the 'Sy channel as a function of #y. On the left the
three energy levels extracted from fitting the eigenvalues to single exponentials for each #y in the range of
(to + 1,219). On the right a magnification of the ground state is plotted.

tolerance). We also define U’ and V' to be the columns of U and V that correspond to the selected
non-vanishing singular values. We can now project the creation and annihilation operators to new
sets that are linearly independent using

Q=Y [z G, ai=Y [zt o (3.6)
k ! k !

With the above projection the new correlation matrix K’(7) becomes
K'(t)=x""2U"K@)v'E /2 (3.7)

The dimension of K'(¢) is now equal to the number of non-vanishing singular values. In addition
K'(tp) = 1. We can now re-write the generalized eigenvalue problem as regular eigenvalue problem
using

K' (1)@ = @it —10) , o K'(t) = Ai(t —10) 0] (3.8)

This is now a regular non-symmetric matrix eigenvalue problem that can be solved for the left
() and right (@) eigenvectors and the eigenvalues A;(f —ty). The eigenvalues can now be used to
extract the desired energy levels using eq. 2.14, or fits to single exponentials.

The idea of using multiple time shifts of a signal to recast the problem of estimating the
contributing frequencies into a generalized eigenvalue problem has been used before in signal pro-
cessing (for example [7, 8]). In [7, 8] SVD was used to obtain the number as well as the values
of the contributing frequencies. In the above I have generalized the method to the case of a matrix
of correlators as well as established the connection to the creation and annihilation operators of
the underlying quantum field theory. This connection allows for use of the obtained eigenvectors
and projection operators with the analysis of three point functions for extracting hadronic matrix
elements [9].
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4. An example

In order to demonstrate how the method works we use correlators for a two proton system in
the 'Sy channel provided by NPLQCD collaboration. The original correlators had a sigle smeared
creation interpolating field and three annihilation interpolating fields. The annihilation interpolat-
ing fields had protons at zero relative momentum with quarks smeared in both protons, not smeared
in both protons and smeared in one proton only. The gauge fields where 2+1 clover anisotropic
fermions with anisotropy 3.5 on a 243 x 128 lattice. The pion mass was roughly 390 MeV. For de-
tails on these ensembles see [2, 5]. Form the original 3 by 1 matrix of correlators we constructed a
3 by 3 matrix of correlators using the time shifting described in Sec. 3. The resulting 3 eigenvalues
were fitted to single exponentials in the interval (f9 + 1,2fy). If Fig. 2 we plot the resulting masses
for the three energy levels as a function of #y. The extracted energy levels should be independent of
to. For the ground state we can see that such independence is achieved within statistical errors for
to > 10 (errors where computed under jackknife). For the excited states we see significant variation
with 7g indicating contaminations from other missing states. Furthermore, given the small size of
the initial basis of interpolating fields several low lying states are not observed.

5. Conclusions

In conclusion, the described method seems as an interesting alternative to the symmetric gen-
eralized eigenvalue problem used for extracting energy levels from correlator matrices. Further
analysis of the sensitivity of the extracted energy levels to both statistical fluctuations as well as
contaminations from excited states is needed in order to establish the reliability of the method.
Such analysis is underway.
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