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1. Introduction

A major focus of interest in hadronic physics is the quest to understantffrst principles
the structure of mesons and baryons. In particular form factors yieddiation about the size and
shape of the hadrons.

Much theoretical and experimental work has gone into understandingticese of nucleons
and theN — A transition. Lattice QCD calculations of the nucleon ahéd- A form factors (FFs)
have been carried out within the same lattice setup as the one used in thilwarf@l. Exper-
imental information on the FFs (1232 is scarce due to its short lifetime-(10-22 s) [§, [8].
However, in a finite-volume simulation with heavy pions, thés stable and accessible to lattice
techniques. A pioneering lattice study [4] investigated the electromagnaticfémtors of the in
the quenched approximation. Recently, a state-of-the-art lattice calcutditiba electromagnetic
FFs of theA and the associated transverse charge densities in the infinite momentum &ame h
been carried ouf{]7]. In this report we extend the effort to the axidl@eudoscalar form factors
of the A(1232) and present preliminary results. To our knowledge this is the first time thse the
FFs have been computed.

Despite the difficulty of experimental confirmation of these results, they ieda gn evalua-
tion of the axial charge and the effectivdA couplings, parameters which can be fed into chiral
expansions to aid the chiral extrapolations of, for example, the nucldahcarge. The axial
Ward-Takahashi identity relates the axial FFs to the pseudoscalar BFis ti#e nucleon case, one
can derive the generalized Goldberger-Treiman relations. In this wertlesive these and check
their validity.

2. Lattice calculation

This project closely follows the methods used for extractifigelectromagnetic form factors
as described comprehensively in R¢}. [7]. We begin with the expresditime isovector axial
vertex:

(B(pr,0)|A4[A(pi,S)) = U (pr.s1) [044] P ug(pi.s). (2.1)
with s
A(X) = TV W), (2.2)
The right-hand side is an expression containing the most general desibimpof the axial
vertex in terms of four form-factors, which we lalgl g3, hy andhg:

v 9’ 'S
i)+ S (M@ @) @)

oHA = —gP (gl(qz)v“ V> +03(0?)

anduy is the Rarita-Schwinger spinor and= ps — p;.
Similarly we can write the pseudoscalar vertex in terms of two form-facgaadh:

(D(ps,s0)PIA(PLS)) = Ta (s, 1) [679 7P ug(pi,s) (2.4)
with 5
P(X) = ()65 (X 25)
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and

a~B
0=~ G(Q) P+ o Rl 26)
A

We isolate the form-factors by constructing ratios of lattice two- and thr@g-functions. The
standard lattice interpolating field with tiA& quantum numbers is given by

X840 = =6 [2 (U (00Kt UG (0 + (1T 0CYoU"0) 5 (0] . @)
The two-point and three-point functions of interest are:
Gz(ur(rvaq’t) = XZXe+i%qr(\;’a<xaa(tffo)xu(tvx)Yra’(o’a» (2-8)
Z A f
Gor(I,Bt) = ;e—i*f'f’rz/a<xaa<t,>'<f>xw/<o,6>> (2.9)
f

whereX stands for the axial-vector and pseudo-scalar currents defined in Bdp and [2]5)
respectively and

1 :
'_4221(1“/1)’ rk:%(1+¢)ygw7 k=1,2,3. (2.10)

We examine ratios of these to eliminate unknatvfactors and leading time-dependence.:

GSur(T, A1) [ G, Bi.tr —1t)Gi(T,0,1) G4, 6, t
RS (M 0ht) = out( Hq )\/ kk( ,Pnf )Gik(I,0,1)Gi(M, 7f)’ 2.11)
Gik(T*,0,tr) | Grk(T4,0,tr —t)Gk(T4, i, t) Gu(T4, Bi )
These ratios tend to a constant at large Euclidean time separgtiohsandt:
tf—t— o0
tf —tj — o
Ro(ue (7,8, 1)% CI% e = Ctr [r/\w, ﬁ;(,(“)r,/\r/r} , (2.12)
with the kinematical constant given by
_1
oo J3[ %, e Baw , B ]| (2.13)
V2| Ma M2 M3 M3 '

3. Lattice ssimulation

We utilize 200 quenched Wilson configurations on a lattice of siZeaB8 = 6.0, which cor-
responds to inverse lattice spacingof = 2.14(6) GeV. We perform the analysis at three hopping
parameter valueg = 0.1554, 01558 and (1562, corresponding to pion massag = 563 490,
and 411 MeV respectively. Additionally, we use a mixed action of domain veddince fermions
on a staggered sea simulated by the MILC collaboration with an Asqtad impaatied [8], with
a pion mass of 353 MeV. A total of 200 configurations are analyzed atalne of the pion mass.
The details of the simulations are summarized in Thple 1.

We use the sequential source meth@dd [9] to calculate three-point functimsse the same
fixed source-sink separation as was used in Rgf. [7}-df fm, or 11 time-slices on the three
guenched ensembles and eight time-slices on the mixed-action ensembile.
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Wilson fermions
\Y # confs K My My/Mp My ma
(GeV) (GeV) (GeV)
SIM-I : Quenched, B =6.0, a ! =214(6) GeV
32 x 64 200 0.1554 0.563(4) 0.645(9) 1.267(11) 1.470(15)
322 x 64 200 0.1558 0.490(4) 0.587(12) 1.190(13) 1.425(16)
328 x 64 200 0.1562 0.411(4) 0.503(23) 1.109(13) 1.382(19)
SIM-1I: Mixed action
Asgtad @m, 4s= 0.01/0.05), DWF @am, s = 0.0138),a ! = 1.58(3) GeV
28% x 64 200 0.353(2) 0.368(8) 1.191(19) 1.533(27)

Table 1: Ensembles and parameters used in the calculation of fortorgac

4. Extracting form-factors

For each ratio

X e =t [r/\ao/ ﬁ;‘/w,/\w} , 4.1)
we work out the trace algebraically for specific combinations of, andrlr'i or *;
3
I-I)[jJ (CI) = Z Z Tortr rj/\ao’(pf)ﬁa’ur’/\r’r(pi)] (4-2)
j=10,1=1
or .
nﬁ“ (Q) = Z -i:artr [r4/\00’(pf)ﬁo’ur’/\r/r(pi)] (4-3)
o,1=1
with
100 0 1-1
Tor=1]010 and T,r=|-1 0 1 (4.4)
001 1-1 0

We refer to these traces as Type | and Type |l respectively. For themand sides we now have
linear combinations of the form-factors where the coefficients are furectitig the initial energy;,
Ma and the spatial initial momentuim. (We Wick rotate and work in the rest-frame of the sink).
In general, the form of the expression is different fo= 4 andu = 1,2,3. The left hand side is
calculated on the lattice, so we may now solve a system of linear equations te igmaorm-
factors. The FFs are extracted by the simultaneous over-constraiabaiarof all the relevant
ratios that contribute to the transition per giv@h The renormalization constaB is required for
the axial FFs. They are given in Table IV {j [3].

We summarize the results obtained for the axial form factors calculated fmuatnsembles
in Figure[1. By extrapolating thg, curve toQ? = 0 we get an estimate of the axial charge of the
A*. In order to conneag (0) to the axial chargeaa, we use the relations given if ]10]. We find
thatg,(0) = —%gM. Using the tree-levebU(4) relationgan = —%gA and the experimental value
ga = 1.269428) [[1] we expect that

01(0) = %g(l 27) =0.76, (4.5)
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Figure 1. Results for the four axial form-factorgs, gz, hy andhs. The dashed curve shows consistency of
g1 for thek = 0.1562 ensemble with a dipole fit giving a pole mass .6f715)GeV.

which is consistent with our results.

5. Effective couplings

Referring to Eq.[(2]4), we decompose thenatrix elements of the pseudoscalar current into
two axial TAA couplings,Gyaa andHaa, with the relation:

ap 2 qan 2\ | 1
9" Gman () + AP Hraa(9F) | Uayup (5.1)
A

2 26,2
2o P1p) = (EM)AEA(@)) (2 — )

and we identify:

fnm?anAA(qz)

~ fnmzzTH (qz)
9= " — @) i

(m2—aq?)

and mgh (5.2)
Note that because the two different possible contractions of the Diraemadicthe 32-spinors
give us two pseudoscalar form-factors we get two effective axigblamys, unlike the case of the
nucleon and th&l — A transition. The quark masg, is computed from the axial Ward-Takahashi
identity andf, from the pion-to-vacuum amplitude. Both are computed from appropriatdieo
nations of two-point functions as shown in the refererfife [3]. Therrealization factoiZp is not
required as its occurrencesrim andgor h cancel.

The results for these form-factors are shown in [fJg. 2. As can be siespjte the large
statistical errorsG.a increases with decreasigyf for the unquenched lattices.
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Figure 2: The effective coupling&,;na andHya for the quenched ensemble wikh= 0.1554.
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Figure 3: Ratios of axial form-factorsys/g; andhz/h;. Dashed curves show consistency with a pion pole
fit for the k = 0.1562 ensemble. We omit the mixed ensemble fromhyé; plot as the signal is washed
out by the larger error bars.

6. Goldberger-Treiman relations

From the axial Ward-Takahashi identity, we have the relationship

(B]3uAY ) = 2mg(A|PIAY). (6.1)
Applying the momentum operator opn (2.1) apd](2.3), the left-hand side gives
ap q°qP
(B]9uAH|B) = 2ma | (g1 — Td3)g"" + (M — Ths) | Ty Ug (6.2)
A
with T = % Using Egs.[(5]1) we get
_ 26 Gmn(c?) _ 2fmiHma(6?)
2mp (91— 793) = T (M- and am (m —thg) = T Mm@ (6.3)

If we demand that thgz andhs terms cancel the pole af = m2, we get the Goldberger-
Treiman relations. In Figurg 3 we show that the ratiggg: andhs/h; are consistent with pion-
pole behavior. We note that, as with the effective axial couplings, thertsvarGoldberger-Treiman
relations, namely:

frGraa(0F) = Mag1(0P) and  frHma(9F) = mahy(dP). (6.4)
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Figure 4: The two Goldberger-Treiman relations for thévaryon.

In Fig. [4 we plot the ratio of the left-hand to right-hand sides of the exjmesgiven in
®-4). For lowQ?, these quenched ratios deviate from unity but are in agreement with unity fo
Q? < 0.8Ge\2. Similar behavior was observed f@mnn and Gy in [B]. In the unquenched
ensemble the errors are too large to enable any conclusions.

7. Conclusions

In this work we have evaluated, for the first time, thé axial form factors,g;, g3, hi, hs
as well as the pseudoscalar form factgr:f].” We have shown that these axial and pseudoscalar
vertex compositions yieltivo effective TAA couplings,Gaa, andHzaa, which in turn satisfy dual
Goldberger-Treiman relations. Results obtained in the quenched thepacaurate enough to
enable a check of these relations and show that there are deviationsib©3 values where chiral
effects are expected to be large. Unquenched results using a mixed laat@narge statistical
errors and require further analysis for allowing a definite conclusiom te@ached.
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