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1. Introduction

Studies of structural properties of mesons and baryons, encoded in their electromagnetic form
factors, are the subject of many recent lattice calculations. However, systematic uncertainties aris-
ing from a variety of sources appear to be much larger than for simpler quantities such as hadron
masses and decay constants. As part of the CLS project 1 a set of ensembles is being generated,
which will allow for a thorough investigation of systematic effects, such as lattice artefacts, finite-
volume effects, and extrapolations in the light quark masses. The CLS project is based on proven
and conceptually simple technology: simulations are performed using non-perturbatively O(a) im-
proved Wilson quarks and the Wilson plaquette action. In order to preserve the local structure of the
lattice action, the link variables remain unsmeared. We employ the deflation-accelerated DD-HMC
algorithm [1] for Nf = 2 flavours of light quarks.

A potentially severe problem for any lattice simulation near the continuum limit is the ob-
served sharp rise in the autocorrelation time of the topological charge [2]. This important issue
has been addressed in several papers [3, 4] and contributions to this conference [5]. In spite of the
progress made in identifying the causes of this phenomenon, a rigorous and effective solution is still
elusive. Therefore we have restricted the calculation of observables to a range of bare couplings
for which the problem of very long autocorrelation times in the topological charge is not observed.
A compilation of these ensembles is shown in Table 1. At our smallest value of the lattice spacing,
a ≈ 0.05fm (i.e. at β = 5.5), where the problem is expected to be most severe, we have checked
explicitly that the topological charge fluctuates around zero at a sizeable rate and produces a rea-
sonably symmetric distribution [6]. We can therefore take confidence that the composition of our
ensembles is not strongly biased and that our statistical errors are reliable.

In this note we report on preliminary results for the pion electromagnetic form factor.2 Another
issue which has received a lot of attention recently, is the hadronic vacuum polarisation contribution
to the muon’s anomalous magnetic moment, ahad

µ . Lattice calculations of this quantity involve the
determination of the vacuum polarisation amplitude, which, like hadronic form factors, depends on

β a[fm] lattice L[fm] # masses mπL Labels

5.20 0.08 64×323 2.6 4 masses 4.8 – 9.0 A1−A4

5.30 0.07 48×243 1.7 3 masses 4.6 – 7.9 D1−D3

5.30 0.07 64×323 2.2 3 masses 4.7 – 7.9 E3−E5

5.30 0.07 96×483 3.4 2 masses 5.0, 4.2 F6,F7

5.50 0.05 96×483 2.5 3 masses 5.3 – 7.7 N3−N5

5.50 0.05 128×643 3.4 1 mass 4.7 O6

Table 1: Simulation parameters and approximate values for the lattice scale and pion masses for those
ensembles which show an acceptable tunnelling rate of the topological charge. The preliminary results
presented in theses proceedings are based on the ensembles labelled “N”, “E” and “F6”.

1https://twiki.cern.ch/twiki/bin/view/CLS/WebHome
2Form factor calculations for baryons are presented in another contribution to this conference [7].
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Figure 1: Left: the effective mass in the Ω-channel for the ensemble N5 (mπ ≈ 410MeV); Right: Sea
quark mass dependence of mΩ for datasets N3−N5. Red and black symbols denote the results from corre-
lated and uncorrelated fits, respectively.

a momentum variable. Therefore, we discuss both the calculation of mesonic form factors and the
determination of ahad

µ in these proceedings.

2. Setting the scale

Studying the scaling properties of observables and expressing dimensionful quantities in phys-
ical units requires the computation of a reference quantity which sets the scale. The mass of the
Ω baryon has emerged as a good candidate, since the Ω is stable in QCD, and its valence sector
consists entirely of strange quarks. Moreover, ChPT studies [8] suggest a simple functional form
for chiral extrapolations in the sea quark mass.

In order to determine the masses of pseudoscalar and vector mesons, as well as octet and
decuplet baryons, we used Jacobi-smeared sources [9], supplemented by HYP-smeared [10] link
variables. In the pseudoscalar channel long and stable plateaus were observed, which allowed for
a reliable determination of the mass via single-cosh fits to the correlation functions. In the vector
channel and for baryons, the unambiguous identification of the ground state turned out to be more
difficult. We therefore employed the procedure of [11], which is based on an ansatz that includes
contributions from the first excited state. In Fig. 1 we show a typical effective mass plot in the
Ω-channel together with the fit result.

In order to determine mΩ an interpolation in the valence quark mass must be performed. This
requires knowledge of the hopping parameter, κs, which corresponds to the bare strange quark
mass. We have determined κs using the procedure described in [6, 12]: Denoting the generic non-
degenerate pseudoscalar and vector mesons by mK and m∗

K , respectively, we interpolate the mass
ratio (mK/m∗

K)2 as a function of (amK)2 to the experimental value mK/m∗
K = 0.554. This yields the

value of κs at each value of the sea quark mass. In a second step one interpolates amΩ in the valence
quark mass to the value of κs. The resulting estimates of amΩ as a function of 1/κsea are shown for
β = 5.5 in the right panel of Fig. 1. A mild dependence on the sea quark mass is observed. At this
stage we have not yet attempted a chiral extrapolation in the sea quark mass to the physical value
of mπ . In order to set the scale at β = 5.5 we therefore take the result for amΩ at the smallest sea
quark, which yields aΩ = 0.053(1) fm.
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Our production runs for baryonic two-point functions on the other ensembles are not yet com-
pleted. In order to compare form factors computed at different lattice spacings consistently, we
employ a simple scaling relation, i.e.

aΩ|β=5.3 =
(

aref|β=5.3

aref|β=5.5

)
aΩ|β=5.5 . (2.1)

Here the scale aref is defined via the kaon mass amK , evaluated at the (unphysical) reference point
where mπ/mK = 0.85 [12], which can be reached without performing a chiral extrapolation. At
β = 5.3 this yields aref = 0.0784(10) fm [12], while at β = 5.5 one obtains aref = 0.0603(15) fm [6].
Our result for aΩ at β = 5.5 and the scaling relation eq. (2.1) imply

aΩ|β=5.5 = 0.053(1) fm, aΩ|β=5.3 = 0.069(2) fm. (2.2)

At β = 5.5 the value of aΩ is smaller by more than 10% compared to aref, which we used previously
to convert our pion masses on the “N”-lattices into physical units (see Table 2 of ref. [6]). Using
the value in eq. (2.2) the pion masses change to mπ = 600, 510 and 410MeV on N3, N4 and N5,
respectively.

3. The pion electromagnetic form factor

The electromagnetic form factor, defined by〈
π

+(~p f )|2
3 uγµu− 1

3 dγµd|π+(~pi)
〉

= (p f + pi)µ fπ(q2), (3.1)

where q = p f − pi is the momentum transfer, encodes the distribution of electric charge inside the
pion. Of particular interest is the charge radius, 〈r2

π〉, which is derived from the pion form factor at
vanishing momentum transfer, i.e.

fπ(q2) = 1− 1
6
〈r2

π〉q2 +O(q4) ⇒ 〈r2
π〉= 6

d fπ(q2)
dq2

∣∣∣∣
q2=0

. (3.2)

Lattice calculations of mesonic matrix elements are technically simpler than the corresponding
quantities for the nucleon. Furthermore, the pion electromagnetic form factor receives no contri-
butions from quark-disconnected diagrams. This opens the possibility to perform a precision test
of lattice QCD, by comparing lattice estimates for 〈r2

π〉 to the experimentally determined value.
However, owing to the finite spatial volume the accessible range of momentum transfers Q2 =−q2

is severely constrained, which presents a major obstacle for precise lattice determinations of 〈r2
π〉.

We have therefore employed flavour-twisted boundary conditions [14] in the valence sector, such
that the momentum transfer satisfies [15]

−Q2 ≡ q2 = (p f − pi)2 =
(

Eπ(~p f )−Eπ(~pi)
)2
−

[(
~p f +

~θ f

L

)
−

(
~pi +

~θi

L

)]2
. (3.3)

We tuned the twist angles ~θi, ~θ f so as to achieve a particularly fine momentum resolution near Q2 =
0. In order to improve the statistical signal we used stochastic Z2 ×Z2 sources in the calculation
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 : N3
 : N4
 : N5
 : F6
 : UKQCD, 330 MeV, 0.1 fm
 : ETMC, 260 MeV, 0.09 fm  : PDG

Figure 2: Left: pion form factor computed for a range of pion masses compared to the results of [16, 17];
Right: the charge radius as a function of the pion mass, compared with the results of the 2 + 1-flavour
simulation from [16].

of quark propagators. As in ref. [16] the pion form factor was extracted from a suitable ratio of
correlators in which the renormalisation factor of the local vector current, ZV, drops out.

In Fig. 2 we show our results for the pion electromagnetic form factor as a function of the
squared Euclidean momentum transfer for the data sets N3, N4, N5 and F6. The corresponding
pion masses in MeV are 600, 510, 410 and 290, respectively. Twisted boundary conditions were
also employed in refs. [16, 17], which are shown together with our data. The much larger number
of data points near Q2 = 0 allows us to perform a very accurate and largely model-independent
determination of the pion charge radius, by computing the linear slope of fπ(Q2) in the vicinity
of Q2 = 0. In this way our estimate of the pion charge radius does not rely on a particular ansatz,
such as vector dominance. As can be seen from the right panel in Fig. 2 we obtain statistically
very precise results for 〈r2

π〉, in particular on the ensembles at β = 5.5. Statistics at our lightest
quark mass (β = 5.3) will be increased. Our preliminary results for 〈r2

π〉 are consistent with the
determination of ref. [16], which uses Nf = 2+1 flavours of domain wall quarks, and the trend in
our lattice data compares favourably with the experimentally determined value.

4. Hadronic vacuum polarisation contribution to (g−2)µ

The anomalous magnetic moment of the muon, aµ ≡ 1
2(g−2)µ , is among the most precisely

measured quantities. Assuming the validity of the Standard Model, the experimental value for aµ

differs from the theoretical prediction at the level of 3.2 standard deviations [18]. An important
ingredient is the leading hadronic contribution to vacuum polarisation, ahad

µ . This quantity is nor-
mally determined via a semi-phenomenological approach based on the evaluation of a dispersion
integral containing experimentally measured hadronic cross sections. Given the importance of aµ

for new physics searches, a first-principles determination of ahad
µ is highly desirable. Following

refs. [19, 20], ahad
µ can be computed on the lattice via the convolution integral

ahad
µ = 4π

2
(

α

π

)2 ∫
∞

0
dQ2 f (Q2)

{
Π(Q2)−Π(0)

}
, (4.1)
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Figure 3: Left: the vacuum polarisation amplitude computed at β = 5.3, L' 2.2fm, mπ ≈ 550MeV, using
twisted boundary conditions. The solid curve is a Padé fit to the data; Right: the integrand of the convolution
integral on the “F6” lattice. The area underneath the solid curve yields the value of ahad

µ .

where Π(Q2) is related to the vacuum polarisation tensor Πµν , i.e.

Πµν(Q) =
∫

d4xeiq·(x−y) 〈
Jµ(x)Jν(y)

〉
≡ (qµqν −gµνq2)Π(q2). (4.2)

Here Jµ denotes the flavour-singlet vector current. A well-known problem is that the convolution
function f (Q2) is strongly peaked for momenta near mµ , which is an order of magnitude smaller
than what can conventionally be realised on current lattice sizes. Twisted boundary conditions
cannot be used in a straightforward manner, since the current-current correlator contains quark-
disconnected diagrams, for which the effect of the twist cancels.

To tackle this problem we have implemented the strategy outlined in [21]: The key observation
is that the continuum limit exists for the individual quark-disconnected and connected contributions
to Π. Moreover, the connected part can be re-interpreted in terms of flavour-non-singlet correla-
tors, which are easily computed using twisted boundary conditions in the standard fashion. ChPT
at NLO also predicts that the contribution from disconnected diagrams is suppressed by a factor
−1/10 relative to the connected ones [21].

Preliminary results for the vacuum polarisation amplitude extracted from the connected cor-
relator in the two-flavour case are shown in Fig. 3. Twisted boundary conditions produce a much
larger density of Q2 values, which greatly stabilises the extrapolation to Q2 = 0 and the extraction
of Π(0), which enters eq. (4.1). Furthermore, owing to the larger reach in Q2 the integrand of the
convolution integral is much more tightly constrained (c.f. Fig. 3, right panel). Our lattice estimates
for ahad

µ computed for Nf = 2 and also in the theory containing a quenched strange quark will appear
elsewhere [22]. Eventually we will also include quark-disconnected diagrams, computed for the
usual Fourier-momenta only, in order to verify that their contribution is indeed suppressed.

5. Summary and outlook

The ensembles generated as part of the CLS project allow for a comprehensive investigation
of systematic effects for a variety of hadronic observables. Our fine lattice resolution will enable
reliable continuum extrapolations and will prove useful to explore hadronic form factors at large
momentum transfers. Twisted boundary conditions are indispensable for an accurate determination
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of the pion form factor. Their use can also be extended to lattice determinations of ahad
µ , for which

a straightforward application of this technique is not obvious.
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