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QCD undergoes a deconfining transition at high temperature to a “quark-gluon plasma” phase

where hadrons may become unbound. In this work, meson correlation functions at non-zero mo-

mentum are studied both in the confined and plasma phases using the Maximum Entropy Method.

In particular, both the longitudinal and transverse modes of the vector correlation functions are

considered. Only in the case of light quarks in the plasma phase, we find that both longitudinal

and transverse spectral functions have a non-zero intercept at zero energy.
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1. Introduction

There has been considerable interest in the quark-gluon plasma phase of QCD over recent
years. On the experimental side, experiments at RHIC have led to an increased understanding of
this phase of matter. This has been matched by a similarly intense theoretical understanding using
e.g. hydrodynamic models and lattice simulations. Despitethis considerable work, there remains a
great deal of uncertainty over many properties of the quark-gluon plasma. In particular, the Particle
Data Book does not contain a single entry for this phase [1].

This work aims to extend our knowledge of the physics of QCD inthe plasma phase by study-
ing the properties of mesonic spectral functions,ρ(ω), both below and above the deconfining
temperature,Tc. The zero energy limit,ω → 0, of spectral functions gives information on hydrody-
namic structure and transport coefficients; we will be particularly interested in the conductivity,σ ,
and the related diffusivity,D = σ/Ξ, whereΞ is the charge susceptibility. These can be obtained
from vector spectral functions. In this paper, we outline anextension of our earlier work [2] to the
case of non-zero momentum [3]. This allows us to study the longitudinal and transverse compo-
nents in the vector channel which can, in principle, unlock interesting information about transport
and hydrodynamics [4]. For more details on transport coefficients and lattice QCD, we refer to the
reviews [5, 6].

2. Lattice and Fitting Details

We begin by defining the usual spectral function in terms of the Euclidean two-point function,
G(t,~p),

G(t,~p) =
∫

dω
2π

ρ(ω ,~p)K(t,ω),

where~p denotes the momentum. The kernel is given by

K(t,ω) =
cosh[ω(t −1/(2T))]

sinh[ω/(2T)]
,

whereT = 1/(aNt). We note that the extraction of a spectral density from a lattice correlator is
an ill-posed problem, since the correlator,G(t), is known at onlyO(10) time points, whereas the
spectral function,ρ(ω), is, in principle, a continuous function. The usual solution of this problem
implements the Bayesian analysis technique of the Maximum Entropy Method (MEM) [7].

At finite temperature the kernel is singular and independentof euclidean time in the limit that
ω → 0 [8]:

lim
ω→0

K(ω , t) =
2T
ω

+O(ω).

In Ref. [2] we uncovered that this singularity affects the reliability of the MEM procedure near
ω = 0. Fortunately it can be trivially corrected by defining a rescaled kernel and spectral function,

K(ω , t) =
ω
2T

K(ω , t), ρ(ω) =
2T
ω

ρ(ω),

and performing MEM on

G(t) =

∫

dω
2π

ρ(ω)K(ω , t).
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Cold Hot

Spatial Volume N3
s ×Nt 483×24 643×24

Lattice spacings a−1 ∼ 4 GeV ∼ 10 GeV
T 1/(aNt) T ∼ 160MeV∼ 0.62Tc T ∼ 420MeV∼ 1.5Tc

Statistics Nc f g ∼ 100 ∼ 100
Quark Masses ma 0.01 & 0.05 0.01 & 0.05

Table 1: Lattice parameters used in the simulation. Estimates for the lattice spacing and temperature are
taken from Ref. [10].

We demonstrated that this redefinition removes the unphysical behaviour of the spectral functions
constructed with MEM nearω = 0, present when the traditional kernel is employed [2].

In the MEM procedure, we used the default model

m(ω) = m0(1+aω)

with m0 determined from a fit of
∫

dω m(ω)K(ω) to the data. This definition ofm(ω) matches
the expected perturbative behaviourρ(ω) ∼ ωρ(ω) ∼ ω2 asω → ∞ and also allows a non-zero
intercept inρ/ω ∼ ρ (corresponding to a transport peak) asω → 0. For a study of lattice spectral
functions at nonzero momentum in the infinite temperature limit, see Ref. [9].

The lattice action and parameters used are identical to those in Ref. [2], i.e. a simple Wilson
plaquette action with quenched, staggered fermions. The lattice parameters used are displayed in
Table 1. In Ref. [2] we determined the electrical conductivity, σ/T = 0.4± 0.1, a result which
has since been confirmed [11]. We extend the work in Ref. [2] further by using twisted boundary
conditions with the same choices of twists as in Ref. [12]. This enables us to access a large range
of momenta which are listed in Table 2. Preliminary results can be found in Ref. [3].

Since we use staggered correlators which have contributions from both parity partners,

G(t) =
∫

dω
2π

K(t,ω)
[

ρ(ω)− (−1)t/a ρ(ω)
]

,

we are forced to apply MEM to even and odd times separately, and then reconstruct the physical
spectral function from

ρphys=
1
2

(

ρeven+ ρodd) .

3. Longitudinal and Transverse Correlators

In Fig. 1 we show the vector correlators for both the longitudinal and transverse modes,GL,T,
for momentapL = 2,π,2π,3π as a function of euclidean time. We display these as a ratio with the
average correlation,GAve = (GL +2GT)/3. Note that we use local (rather than conserved) currents
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~pL |p|L Longitudinal Transverse

(0, 0, 0) 0 - -
(2, 0, 0) 2 V1 V2 & V3

(0, ±π, 0) π V2 V1 & V3

(−2, ±π, 0)
√

4+ π2 ∼ 3.72 - V3

(0, ±2π, 0) 2π ∼ 6.28 V2 V1 & V3

(2, ±2π, 0) 2
√

1+ π2 ∼ 6.59 - V3

(0, 3π, 0) 3π ∼ 9.42 V2 V1 & V3

(−2, 3π, 0)
√

4+9π2 ∼ 9.63 - V3

Table 2: A list of the momenta studied showing which components of thevector current,Vi = ψγiψ , are
longitudinal or transverse. The momenta components~pL which are multiples ofπ are obtained from the
usual Fourier sum, and thosepL components which are integer-valued are obtained from twisted boundary
conditions.

0 5 10

t

0.8

0.9

1

1.1

1.2

1.3

1.4

G
L,

T
 / 

G
A

ve

Longitudinal
Transverse

Figure 1: Longitudinal and transverse vector correlation functionsnormalised by the average correlation
function,GAve = (GL + 2GT)/3, for various momenta,~p, as a function of euclidean time. Data points for
each momentum (for a given time) are offset horizontally forclarity; from left to right they are|~p|L = 2, π ,
2π and 3π .
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Figure 2: Longitudinal (left) and transverse (right) vector spectral function predictions from Ref. [4].
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Figure 3: Longitudinal (left) and transverse (right) vector spectral function for the light (ma= 0.01), hot
case. The main plot shows theω ∼ 0 region, and the insert the fullω range.

in our correlators definitions. As can be seen, there is a clear difference between these modes; the
longitudinal correlator is consistently larger than the transverse for each time slice and momentum
value. It would be interesting to understand this feature analytically. Note that the momentum
dependence is much stronger for even timeslices. This is an artefact of the staggered formulation.

The diffusivity, D, can in principle be obtained from the momentum dependence of the vector
spectral function (at small mass). In Ref. [4] a prediction was made of the energy dependence of the
vector spectral function for both the longitudinal and transverse modes (for the massless case in the
plasma phase). This is shown in Fig. 2. As can be seen, their prediction for theω → 0 behaviour
differs between these two modes:ρL(ω = 0,~p) = 0 for ~p 6= 0 whereasρT(ω = 0,~p) 6= 0.

In Fig. 3, we show the spectral functions obtained via MEM forthe longitudinal and transverse
vector case for quark massma= 0.01. As can be seen, there is a clear non-zero intercept for both the
longitudinal (contradicting [4]) and transverse modes. The spectral function for the heavier quark
mass,ma= 0.05, is shown in Fig. 4. We note that the intercept is zero for both the longitudinal
and transverse cases for this heavier quark mass yielding a null result for the heavy-quark diffusion
coefficient [14].
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Figure 4: Longitudinal (left) and transverse (right) vector spectral function for the heavy, hot case. The
main plot shows theω ∼ 0 region, and the insert the fullω range.
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Figure 5: Pseudoscalar spectral function for thema= 0.01 (left) andma= 0.05 (right) cases. The main plot
shows theω ∼ 0 region, and the insert the fullω range.

We checked the spectral function for both the quark massesma= 0.01 and 0.05 in thecold
phase, and found a zero intercept for both longitudinal and transverse modes. This agrees with our
expectation that there are no transport features in this phase.

In Fig. 5, the pseudoscalar spectral functions are shown in the hot phase. We observe a zero
intercept for this channel again in agreement with the expectation that there are no transport fea-
tures.

4. Conclusions

In this work we have extended our previous study [2] of the spectral functions of vector corre-
lators in the cold and hot phase of QCD to non-zero momenta using twisted boundary conditions
to allow a finer momentum resolution. We are thus able to calculate and contrast the longitudinal
and transverse modes of the vector two-point function. We find that a zero intercept at zero energy
for the spectral function in all cases except for the hot, light quark vector mesons where we find
ρ(ω → 0,~p) 6= 0 for both the longitudinal and transverse modes. This is despite the fact that the two
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modes’ two-point correlation functions have a different qualitative behaviour. Our future plans are
to study the momentum dependence of these modes with the aim of further studying hydrodynamic
structure at zero and nonzero momentum [13].
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