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1. Introduction

The nature of the finite temperature phase transition, and the value of the transition temperature
are basic questions in finite temperature QCD which are stillmissing final answeres. For QCD with
2+1 flavors one group [1] finds the deconfining transition, andthe chiral transition temperatures are
separated by 20-30 MeV while another group [2] claims both temperatures to coincide. Moreover,
the Brookhaven/Bielefeld collaboration [2] gets for transition temperatureTc = 196(3)MeV, which
is much higher than the transition temperatures found by theWuppertal group [3] for the decon-
fining and chiral transitions -Tc = 170(7)MeV, andTc = 146(5)MeV, respectively. Both groups
use rooted staggered fermions, but with different levels ofimprovement. It has been argued [1]
that the discrepancy is largely due to the rather coarse lattices used by the Brookhaven/Bielefeld
collaboration. Recently, the Brookhaven/Bielefeld collaboration has extended their calculations to
lattices of temporal extentNt = 8 [4] and found that with decreasing lattice spacingTc was shifted
by 5−7MeV towards smaller values.

The connection between deconfining and chiral transition has been subject of several phe-
nomenological considerations. Naively, one would expect the temperature of the deconfinement
transition to lie below that of the chiral transition, if different at all. This turns out to be the case,
for example, in the Polyakov-loop extended Nambu–Jona-Lasinio model [5]. More likely is that
both transitions occur at the same temperature, as Polyakovloop and chiral condensate mix at fi-
nite dynamical quark masses. The consequence would be a simultaneous enhancement of both the
chiral and Polyakov-loop susceptibilities along the transition line [6, 7, 8, 9].

To clarify the issue, independent investigations of the nature of the finite temperature phase
transition preferably with different type of the lattice fermionic action are needed (for recent related
works see [11] (domain wall), [12] (twisted mass) and [13] (improved Wilson fermions) ). In this
work we present results of simulations withNf = 2 dynamical flavors of nonperturbativelyO(a)
improved Wilson fermions and plaquette gauge action on lattices of temporal extentNt = 14,12,10
and 8. Our results were partially reported in [10, 14].

2. Definitions and simulation parameters

The fermionic action for each of the two flavors reads

SF = a4∑
x

{ 1
2a ∑

µ
ψ̄(x)Uµ(x)

[

γµ −1
]

ψ(x+aµ̂)

−
1
2a ∑

µ
ψ̄(x)U†

µ(x−aµ̂)
[

γµ +1
]

ψ(x−aµ̂)

− cSW
i

2a ∑
µν

ψ̄(x)σµν Pµν(x)ψ(x)+ (m+mc) ψ̄(x)ψ(x)
}

(2.1)

wherePµν is the clover-leaf form of the lattice field strength tensor and

amc =
1

2κc
, am=

1
2κ

−
1

2κc
(2.2)

κc being the critical value of the hopping parameter.
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β cSW V = N3
s Nt κc r0/a

5.20 2.0171 163 8 0.136050(17) 5.454(58)
5.20 2.0171 243 10 0.136050(17) 5.454(58)
5.25 1.9603 163 8 0.136273(7) 5.880(26)
5.25 1.9603 243 8 0.136273(7) 5.880(26)
5.25 1.9603 323 12 0.136273(7) 5.880(26)
5.25 1.9603 403 14 0.136273(7) 5.880(26)
5.29 1.9192 243 12 0.136440(4) 6.201(25)

Table 1: Parameters of the simulation.

The couplings, lattice volumes and lattice spacings covered by our simulations are listed in
Table 1. The scale parametersr0/a have been taken from the zero temperature runs of the QCDSF
collaboration at the corresponding couplings. They refer to the chiral limitκ = κc. We also list the
critical hopping parametersκc, which we adopted from QCDSF as well. (For recent relevant work
see [15].) The gauge field configurations were generated on the BlueGene/L at KEK, the RSCC
cluster at RIKEN, the MVS-100k at the Joint Computer Center (Moscow), on the SKIF-Chebyshev
at Moscow State University, as well as on the Altix at HLRN.

Two-flavor QCD is expected to undergo a second order transition at finite temperature in the
chiral limit and at very small quark masses. In the chiral limit the order parameter is the chiral
condensate

σ =
a3

V ∑
x

ψ̄(x)ψ(x) . (2.3)

For heavy quark masses close to the quenched limit, the theory is known to undergo a first order
phase transition. In that limit the order parameter is the Polyakov loop

L =
1

N3
s

∑
~x

ReL(~x) , L(~x) =
1
3

Tr
Nt

∏
x4=1

U4(x) . (2.4)

The temperature of the chiral transition is, for generalm, identified with the peak position of
the chiral susceptibility

χσ ≡ 〈σ2〉c = 〈σ2〉− 〈σ〉2 , (2.5)

while the peak of the Polyakov-loop susceptibility

χL ≡ N3
s 〈L

2〉c , 〈L
2〉c =

(

〈L2〉− 〈L〉2) (2.6)

defines the temperature of the deconfining transition.
It is expected that the two-flavor theory is in the same universality class as the three-dimensional

O(4) Heisenberg model [16], with the external magnetic fieldand the magnetization being identi-
fied with the bare quark mass ˆm≡ amand the chiral condensatêσ ≡ 〈σ〉, respectively. The critical
exponents of this model were found to be [17]

1
βδ

= 0.537(7) ,
1
δ
= 0.206(1) . (2.7)
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Let Tc(m) denote the pseudocritical temperature at finitem, which we define to be the temperature
corresponding to the position of the peak of the chiral susceptibility

χσ =
∂ σ̂
∂ m̂

. (2.8)

From the scaling relation connecting the chiral condensate, the dynamical quark mass and the
temperature in the vicinity of the phase transition we then derive

Tc(m)−Tc(m= 0) ∝ m̂
1

βδ . (2.9)

Assuming
m2

π ∝ m, (2.10)

we thus expect to find
Tc(m)−Tc(m= 0) ∝ m1.07(1)

π (2.11)

for a second order transition atm= 0. A first order transition, on the other hand, would give

Tc(m)−Tc(m= 0) ∝ m2
π . (2.12)

The chiral condensate is related to the average plaquettePby means of a Maxwell relation [18].
The chiral condensate and the plaquette can be found from thepartial derivatives of the partition
functionZ:

1
V

∂
∂ β

lnZ

∣

∣

∣

∣

m̂
= −6P+2

∂ m̂c

∂ β
σ̂ −2

∂ cSW

∂ β
δ̂ , (2.13)

1
V

∂
∂ m̂

lnZ

∣

∣

∣

∣

β
= 2σ̂ , (2.14)

where last term in (2.13) comes from the clover term and is neglected below because it is suppressed
by two orders of the lattice spacing with respect to the chiral condensate [19, 20, 21].

The second derivative∂ 2 lnZ/∂β ∂m̂ can be expressed in two different orders, which leads to
relation:

∂ P
∂ m̂

∣

∣

∣

∣

β
−

1
3

∂ m̂c

∂ β
∂ σ̂
∂ m̂

∣

∣

∣

∣

β
=

1
3

∂ m̂
∂ β

∣

∣

∣

∣

σ̂

∂ σ̂
∂ m̂

∣

∣

∣

∣

β
. (2.15)

called the Maxwell relation. It holds for any lattice size and for all values ofβ andm. Then chiral
condensate susceptibility can be expressed as

χσ =
1
µ

∂P
∂m̂

, (2.16)

where

µ−1 = 3

(

∂ m̂c

∂ β
+

∂ m̂
∂ β

∣

∣

∣

∣

σ̂

)−1

is a finite number.
We also computed the correlator〈Lσ〉c which can be obtained from the derivative of the aver-

age Polyakov loop with respect to mass:

〈Lσ〉c =
∂ 〈L〉
∂m̂

∣

∣

∣

∣

β
. (2.17)
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Figure 1: The chiral susceptibility on the 32312 (left) and 40314 lattice (right) atβ = 5.25 together with a
Gaussian fit.

r0 mTc
π

β V r0 Tc(m)
χL χσ 〈Lσ〉c

5.20 163 8 0.682(7) 2.73(6) 2.78(6) 2.81(7)
5.20 243 10 0.545(6) 1.59(8) 1.59(16) 1.55(14)
5.25 243 8 0.735(3) 3.18(4) 3.17(4) 3.33(7)
5.25 323 12 0.490(2) 1.00(11) 1.05(8) 1.05(7)
5.25 403 14 0.420(2) 0.59(6)
5.29 243 12 0.517(2) 1.49(8) 1.40(9) 1.3(1)

Table 2: The pseudocritical temperatures and corresponding pion masses obtained from the peak ofχL, χσ
and〈Lσ〉c on our various lattices.

3. Transition temperature

In Figure 1 we show the chiral susceptibility for lattices with Nt = 12 and 14 corresponding to
our lowest quark masses.

In Table 2 we show the pseudocritical temperatureTc(m) and the corresponding pseudocritical
pion masses,mTc

π , obtained from the peak of the Polyakov-loop susceptibility, the chiral suscepti-
bility and the correlator (2.17) ofL andσ , respectively. In Fig. 2 the results together with an ex-
trapolation to the chiral limit are presented. We find that onall lattices the individual pion masses
mTc

π coincide with each other within the error bars.

One can see from the Figure 2 that the temperatureTc(m) shows an almost linear behavior in
the pion mass, in accord with the prediction (2.11) of theO(4) model. We thus may fit the data by
theansatz

Tc(m) =C+D(r0mπ)
1.07 . (3.1)

The result is shown by the solid curve. Setting the scale by the nucleon mass, the QCDSF collabo-
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Figure 2: The pseudocritical temperatureTc(m) as a function of pion mass, together with a fit to the power
m1.07

π , according to the three-dimensionalO(4) model.

ration findsr0 = 0.467(15) fm. Using this value, we obtain at the physical pion mass

r0Tc = 0.408(5) , Tc = 172(3)(6)MeV , (3.2)

where the first error onTc is statistical, and the second error reflects the uncertainty in setting the
scale. This result only slightly differes from our result [14] obtained without 403 14 lattice. It is
in good agreement with the deconfining transition temperature found by the Wuppertal group, but
lies significantly below the result of the Brookhaven/Bielefeld collaboration.

4. Conclusions

We have simulated QCD at finite temperature with two dynamical flavors of nonperturbatively
improved Wilson fermions on lattices as large asNt = 14 and lattice spacings as low as 0.075fm.
The transition temperature has been computed from the Polyakov-loop susceptibility, the chiral
susceptibility as well as the correlator of Polyakov loop and chiral condensate. All three tempera-
tures are found to coincide with each other within the error bars. The critical behavior appears to
be in accord with the predictions of theO(4) Heisenberg model, at least as far as the quark mass
dependence ofTc is concerned.

Let us note that the Maxwell relation used to compute the chiral condensate susceptibility has
proven to be a powerful tool in unveiling the phase structureof clover fermions.
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