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1. Introduction

The nature of the finite temperature phase transition, andalue of the transition temperature
are basic questions in finite temperature QCD which arenstiing final answeres. For QCD with
2+1 flavors one group [1] finds the deconfining transition, tecchiral transition temperatures are
separated by 20-30 MeV while another group [2] claims bathpieratures to coincide. Moreover,
the Brookhaven/Bielefeld collaboration [2] gets for tritings temperaturd, = 196(3) MeV, which
is much higher than the transition temperatures found by\hppertal group [3] for the decon-
fining and chiral transitions T; = 170(7) MeV, andT; = 146(5) MeV, respectively. Both groups
use rooted staggered fermions, but with different levelgsrgirovement. It has been argued [1]
that the discrepancy is largely due to the rather coarsiedattised by the Brookhaven/Bielefeld
collaboration. Recently, the Brookhaven/Bielefeld dotleation has extended their calculations to
lattices of temporal exted; = 8 [4] and found that with decreasing lattice spacigvas shifted
by 5— 7MeV towards smaller values.

The connection between deconfining and chiral transitiom leen subject of several phe-
nomenological considerations. Naively, one would expkettemperature of the deconfinement
transition to lie below that of the chiral transition, if flifent at all. This turns out to be the case,
for example, in the Polyakov-loop extended Nambu—Jonaai@asnodel [5]. More likely is that
both transitions occur at the same temperature, as Polylakpvand chiral condensate mix at fi-
nite dynamical quark masses. The consequence would be fasienus enhancement of both the
chiral and Polyakov-loop susceptibilities along the titgms line [6, 7, 8, 9].

To clarify the issue, independent investigations of theireabf the finite temperature phase
transition preferably with different type of the latticerf@onic action are needed (for recent related
works see [11] (domain wall), [12] (twisted mass) and [1&)groved Wilson fermions) ). In this
work we present results of simulations with = 2 dynamical flavors of nonperturbative@(a)
improved Wilson fermions and plaquette gauge action oitéattof temporal exterid; = 14,12 10
and 8. Our results were partially reported in [10, 14].

2. Definitions and simulation parameters

The fermionic action for each of the two flavors reads
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whereP,, is the clover-leaf form of the lattice field strength tensod a
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K¢ being the critical value of the hopping parameter.
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B csw | V=N3N Kc ro/a
5.20| 20171 16°8 0.13605017) | 5.454(58)
5.20| 20171 | 24°10 | 0.13605Qq17) | 5.454(58)
5.25| 1.9603| 16°8 0.1362737)
5.25| 1.9603| 248 0.1362737)
5.25| 1.9603| 32812 | 0.1362737) | 5.880(26)
)
)

5.25| 1.9603| 4014 | 0.1362737
5.29| 1.9192| 24312 | 0.13644Q4

Table 1: Parameters of the simulation.

The couplings, lattice volumes and lattice spacings calveseour simulations are listed in
Table 1. The scale parametegga have been taken from the zero temperature runs of the QCDSF
collaboration at the corresponding couplings. They rafehé chiral limitk = k.. We also list the
critical hopping parametets,, which we adopted from QCDSF as well. (For recent relevamkwo
see [15].) The gauge field configurations were generated @BlileGene/L at KEK, the RSCC
cluster at RIKEN, the MVS-100k at the Joint Computer Centésgcow), on the SKIF-Chebyshev
at Moscow State University, as well as on the Altix at HLRN.

Two-flavor QCD is expected to undergo a second order transitt finite temperature in the
chiral limit and at very small quark masses. In the chiralitithe order parameter is the chiral
condensate

a® _
o=y Z PP(x). (2.3)

For heavy quark masses close to the quenched limit, theythi@&nown to undergo a first order
phase transition. In that limit the order parameter is thigdkov loop

Ny
L= Nig ; ReL (%), L(X) = %Tr X4|_:|1U4(x). (2.4)

The temperature of the chiral transition is, for genenaldentified with the peak position of
the chiral susceptibility

Xo = (0%)c = (0?) — (0)2, (2.5)
while the peak of the Polyakov-loop susceptibility
XL =N (L), (LP)e = ((L?) —(L)?) (2.6)

defines the temperature of the deconfining transition.

Itis expected that the two-flavor theory is in the same usaidy class as the three-dimensional
O(4) Heisenberg model [16], with the external magnetic faeld the magnetization being identi-
fied with the bare quark mass= amand the chiral condensafe= (o), respectively. The critical
exponents of this model were found to be [17]

1 1
55~ 0537(7), = =0.206(1). (2.7)
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Let Tc(m) denote the pseudocritical temperature at finitevhich we define to be the temperature
corresponding to the position of the peak of the chiral SptHoiity
00
Xo= G
From the scaling relation connecting the chiral condendhte dynamical quark mass and the
temperature in the vicinity of the phase transition we therive

(2.8)

To(m) — To(m=0) O 5. (2.9)
Assuming
mZ 0m, (2.10)
we thus expect to find
Te(m) — Te(m=0) 0 mz°"Y (2.11)

for a second order transition mt= 0. A first order transition, on the other hand, would give
Te(m) — Te(m=0) O mé. (2.12)

The chiral condensate is related to the average plagaétganeans of a Maxwell relation [18].
The chiral condensate and the plaguette can be found frompatttial derivatives of the partition
function Z:

%ln = —6P+2(2—r2°&—20;2w3, (2.13)
9 Inz‘ = 20, (2.14)
B
where last term in (2.13) comes from the clover term and itenéed below because itis suppressed
by two orders of the lattice spacing with respect to the tlkimadensate [19, 20, 21].

The second derivativé?InZ /38 drh can be expressed in two different orders, which leads to

relation:

Z
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called the Maxwell relation. It holds for any lattice sizedéfor all values of andm. Then chiral
condensate susceptibility can be expressed as

_10P
S pom’

(2.15)

(2.16)

Xo
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_ o, dm
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)
is a finite number.
We also computed the correlat@ro) which can be obtained from the derivative of the aver-
age Polyakov loop with respect to mass:

(LO)e = (2.17)
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Figure 1: The chiral susceptibility on the 322 (left) and 4614 lattice (right) ai3 = 5.25 together with a
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B \Y ro Te(m)

XL Xo (Lo)c
5.20| 168 | 0.682(7)| 2.73(6) | 2.78(6) | 2.81(7)
5.20 | 24310 | 0.545(6) | 1.59(8) | 1.59(16)| 1.55(14)
5.25| 2438 | 0.735(3)| 3.18(4) | 3.17(4) | 3.33(7)
5.25| 32812 | 0.490(2)| 1.00(11) | 1.05(8) | 1.05(7)
5.25| 40°14 | 0.420(2) 0.59(6)
5.29 | 24312 | 0.517(2)| 1.49(8) | 1.40(9) | 1.3(1)
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0.1363

Table 2: The pseudocritical temperatures and corresponding pi@sesaobtained from the peakxf, xo
and(Lo)¢ on our various lattices.

3. Transition temperature

In Figure 1 we show the chiral susceptibility for latticegw; = 12 and 14 corresponding to
our lowest quark masses.

In Table 2 we show the pseudocritical temperaffy@n) and the corresponding pseudocritical
pion massesny, obtained from the peak of the Polyakov-loop susceptbittie chiral suscepti-
bility and the correlator (2.17) df and g, respectively. In Fig. 2 the results together with an ex-
trapolation to the chiral limit are presented. We find thaafidattices the individual pion masses
mj¢ coincide with each other within the error bars.

One can see from the Figure 2 that the temperalym®) shows an almost linear behavior in
the pion mass, in accord with the prediction (2.11) of@{d) model. We thus may fit the data by
theansatz

To(m) = C+D (romg) 107, (3.1)

The result is shown by the solid curve. Setting the scale éytitleon mass, the QCDSF collabo-
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Figure 2: The pseudocritical temperatufg(m) as a function of pion mass, together with a fit to the power
mk%7, according to the three-dimensior@(4) model.

ration findsro = 0.467(15) fm. Using this value, we obtain at the physical pion mass
roTc =0.4085), T.=1723)(6)MeV, 3.2

where the first error ofl; is statistical, and the second error reflects the unceytaingetting the
scale. This result only slightly differes from our resulé]Iobtained without 4814 lattice. It is
in good agreement with the deconfining transition tempeediund by the Wuppertal group, but
lies significantly below the result of the Brookhaven/Bield collaboration.

4. Conclusions

We have simulated QCD at finite temperature with two dynahfii@eors of nonperturbatively
improved Wilson fermions on lattices as largeMNas= 14 and lattice spacings as low a®105fm.
The transition temperature has been computed from the Rnhlaop susceptibility, the chiral
susceptibility as well as the correlator of Polyakov loop ghiral condensate. All three tempera-
tures are found to coincide with each other within the eriemsb The critical behavior appears to
be in accord with the predictions of tli&4) Heisenberg model, at least as far as the quark mass
dependence 0l is concerned.

Let us note that the Maxwell relation used to compute theatbivndensate susceptibility has
proven to be a powerful tool in unveiling the phase structirelover fermions.
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