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Applying Monte-Carlo methods to the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)

model we go beyond the saddle-point approximation in a mean-field calculation and introduce

fluctuations around the mean fields. The impact of fluctuations on the thermodynamics of the

model in the two-flavor case becomes evident by studying the second-order Taylor expansion

coefficients of the thermodynamic grand-canonical partition function with respect to the quark

chemical potential. Here we show a comparison with extrapolations from lattice QCD. We find

that in order to reproduce lattice data for the flavor non-diagonal quark susceptibilities the intro-

duction of fluctuations is unavoidable.
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1. Introduction

Results of QCD thermodynamics from lattice computations are reproduced surprisingly well
with a quasiparticle model, an extension of the Nambu–Jona-Lasinio model with inclusion of
Polyakov-loop dynamics (the PNJL model) at the mean-field level [1, 2, 3]. A better understanding
of the mechanism at the origin of these transitions requiresthe investigation of fluctuations in the
PNJL model [4]. Here we include fluctuations by performing numerical simulations of the ther-
modynamics using standard Monte-Carlo (MC) techniques. The advantage of this method is that
it automatically incorporates fluctuations to all orders. In the present work we restrict ourselves
to fluctuations of the static zero-modes which lead to an improvement beyond the saddle-point
approximation.

We perform our analysis for the case of vanishing chemical potential where a comparison with
lattice simulation results is possible. In particular, we will see that the temperature dependence of
the flavor non-diagonal second derivative of the thermodynamic grand-canonical partition function,
with respect to quark chemical potentials, is very sensitive to these fluctuations.

2. The PNJL partition function

The Euclidean action of the two-flavor PNJL model including finite baryon and isospin chem-
ical potentials is given by [5]

SE(ψ , ψ̄ ,φ) =

∫ β

0
dτ
∫

d3x
{

ψ̄(i /D+ γ0µ̃ −m)ψ +G
[

(ψ̄ψ)2+(ψ̄ iγ5~τψ)2
]}

−β
∫

d3x U (φ ,β ), (2.1)

with β = 1/T. Hereψ is theNf = 2 doublet quark field,m = diag(mu,md) is the quark mass
matrix and the covariant derivative is

i /D = iγµ (∂ µ − igAµ). (2.2)

The quark chemical-potential matrix,µ̃ , is defined as̃µ = diag[µu,µd].
The Polyakov-loop effective potential,U , involves the gauge-field degrees of freedom denoted

by φ and models the confinement-deconfinement transition in the pure gauge theory at mean-field
level. In the PNJL model quarks interact with a background color gauge fieldA4 = iA0, where
A0 = δµ0gA

µ
a ta with the gluon fieldsA µ

a ∈ SU(3)c andta = λ a/2. The fieldA4 is related to the
traced Polyakov loop according to

Φ =
1
Nc

trcL with L = exp

(

i
∫ β

0
dτ A4

)

. (2.3)

In Polyakov gauge, the matrixL is given in a diagonal representation

L = exp(i(φ3λ3+φ8λ8)) , (2.4)

with the (diagonal) SU(3) generatorsλ3 andλ8. The dimensionless effective fieldsφ3 andφ8 are
identified with the Euclidean gauge fields in temporal direction divided by the temperature,A(3)

4 /T

andA(8)
4 /T. These two fields parametrize the diagonal elements of SU(3)c.
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In this paper we consider the ansatz for the effective potential given in [6, 7] motivated by the
SU(3) Haar measure which emerges when integrating out six of the eight gluon fields:

U (Φ,Φ∗,T)
T4 =−1

2
a(T)Φ∗Φ+b(T) ln[1−6Φ∗Φ+4(Φ∗3+Φ3)−3(Φ∗Φ)2]. (2.5)

The temperature-dependent prefactors are given by

a(T) = a0+a1

(

T0

T

)

+a2

(

T0

T

)2

and b(T) = b3

(

T0

T

)3

. (2.6)

The particular choice ofa(T) andb(T) is such that we can reproduce the high-temperature behavior
of thermodynamic quantities like pressure, energy and entropy density. An additional constraint for
fixing the parameters is the critical temperature of the first-order deconfinement transition in pure
gauge QCD,T0 = 270 MeV, as given by lattice calculations, and the requirement thatΦ∗,Φ → 1 as
T → ∞.

Given the action (2.1), the partition function of our systemis

Z = N

∫

DφDσD~π exp

[

Tr ln[S−1]− 1
T

∫

d3x
(

U (φ ,T)+
σ2+~π2

2G

)

]

. (2.7)

whereφ stands for the Polyakov loop fieldsφ3 andφ8. We write the pion field~π = (π1,π2,π3) in
terms ofπ± = 1√

2
(π1± iπ2), π0 = π3 andτ± = 1

2(τ
1± iτ2), so that

~τ ·~π =
√

2(τ+π−+ τ−π+)+ τ3π0.

The inverse quark propagator takes the form

S−1 =

(

− /∂ +(µu− iA4)γ0+ iγ5π0−M i
√

2γ5π+

i
√

2γ5π− − /∂ +(µd − iA4)γ0+ iγ5π0−M

)

with the dynamical quark massM = m0−σ generated by the scalar fieldσ < 0. We work in the
isospin-symmetric limit withm0 = mu = md for convenience. This scalar field is related to the
chiral (quark) condensate byσ = G〈ψ̄ψ〉.

3. PNJL model in a finite volume

In the present calculation we perform a step beyond mean-field approximation by including
fluctuations of the zero modes of the relevant fields. This is admittedly only part of all possible
field fluctuations, but it represents nevertheless an improvement with respect to the standard mean-
field calculation. These zero-mode fluctuations can be introduced considering a system defined in
a finite volumeV.

The partition function in momentum space is written as

Z =

∫

DφDσD~π exp
[V

T

(

∑
n

∑
~p

Trln[S−1(iωn,~p)]−U (φ ,T)− σ2+~π2

2G

)]

(3.1)

whereωn = (2n+1)πT are the Matsubara frequencies.
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The presence of a volume factorV in the exponent of Eq. (3.1) makes it possible to compute
the full partition function in mean-field approximation using Monte-Carlo techniques. The size of
the volume is now specified according to the conventions adopted in lattice calculations. For a fixed
extension of the lattice in the Euclidean time direction, the temperature is set by the lattice spacing
a, and the volume size is related to the temperature:

a=
1

NtT
=⇒ V = N3

sa3 =
N3

s

N3
t T3

, (3.2)

whereNt is the number of lattice sites in the Euclidean time direction, andNs is the number of
lattice sites in the space direction. It follows thatV = k/T3, where different values ofk= (Ns/Nt)

3

will be chosen for our purpose:k = 64,125,250,500,1000,2500. The ratio between the smallest
and the largestk is approximately 40. In this way we can study systematicallythe dependence of
the observables on the volume size at fixed temperatureT. The typical lattice simulation volume
corresponds tok= 64 .

4. Non-zero quark chemical potentials: Taylor expansion

The starting point for studying the thermodynamics forNf = 2 quark flavors is the partition

function (3.1). The degrees of freedom in this case are theA(3)
4 andA(8)

4 components of the gauge
field and the bosonic field variablesσ and~π. In the NJL sector of the model we need to specify the
current quark massm0, the coupling constantG and the three-momentum cutoffΛ. The parameters
used here are the ones of Refs. [5, 6]:

m0 = 5.5 MeV, G= 10.1 GeV−1, Λ = 650 MeV.

These parameters are determined to reproduce pion properties (mass, decay constant) in the
infinite volume limit at zero temperature.

Dealing with non-zero quark chemical potentialsµq in lattice QCD thermodynamics is noto-
riously difficult because of the well-known fermion sign problem. A possible way of overcoming
this problem is the Taylor-expansion approach. Instead of performing an explicit calculation at
µq 6= 0, the thermodynamic potential is expanded in a Taylor series in µq/T around zero chemical
potential,

Ω(T,µ) =
1

VT3 lnZ =
∞

∑
i, j=0

χi j (T)
(µu

T

)i (µd

T

) j
, (4.1)

with

χi j (T) =
1

i! j!
∂ i+ jΩ

∂ (µu/T)i∂ (µd/T) j

∣

∣

∣

∣

µu=µd=0
, (4.2)

where only even terms survive due toCPsymmetry. The coefficientsχi j (T) are evaluated atµq = 0.
The comparison between lattice data and Monte-Carlo calculations for these coefficients in

the PNJL model represent an important test of this model. In particular, the flavor non-diagonal
coefficientχ11 that vanishes in the saddle-point approximation is of interest in this context: it is
necessary to take fluctuations of the mean field into account in order to obtain a non-vanishing
result forχ11.
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4.1 Second order Taylor expansion coefficients and susceptibilities

From the definition (4.2) we obtain the coefficientsχuu andχud (quark susceptibilities)

χuq =
1

VT
∂ 2

∂ µu∂ µq
lnZ =

T2

VT3

(

V
T

〈

∂ 2

∂ µu∂ µq
lndetS−1(T,µu,µd,σ ,~π,A)

〉

+

(

V
T

)2
〈

(

∂
∂ µu

lndetS−1(T,µu,µd,σ ,~π ,A)
)2
〉

−
(

V
T

)2〈 ∂
∂ µu

lndetS−1(T,µu,µd,σ ,~π ,A)
〉2
)

. (4.3)

The behavior of the flavor non-diagonal coefficientχ11 = χud is quite different from that of
all the other expansion coefficients: it vanishes in the saddle-point approximation whereas lattice
QCD clearly displays a non-zero signal for this quantity aroundTc.

From a detailed analysis of (4.3) one can find that there are two main contributions to signal in
this channel: one is connected with fluctuations ofA8, the other with fluctuations of the pion field.
Both of these give zero in the saddle-point limit.

The pionic andA8 contributions toχud resulting from the MC-PNJL computation are shown in
Fig. 1. Two characteristic features are immediately apparent. First, the term involving pionic zero-
modes is strongly volume dependent and vanishes in the limitof infinite volume. Secondly, the
term associated with fluctuations of theA8 gauge field is independent of the box size and survives
in fact as the volume becomes infinitely large.

Figure 1: Different contributions to the off-diagonal susceptibility χ11 = χud for different volume ratiosk
computed in the Monte-Carlo approach. Left panel: Contribution from pionic fluctuations, for which the
volume dependence is large. Right panel: Contribution fromfluctuations of theA8 field, which show a
negligible volume dependence.

4.2 Chiral effective Lagrangian

In order to better understand the role of the pionic fluctuations in the evaluation ofχud, let us
briefly digress and study this issue in the context of chiral perturbation theory (ChPT).

For low temperatures and small values of the chemical potential, the physics is dominated by
the effects of light pions and we can describe the system in terms of an effective chiral Lagrangian

5
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which expanded to second order in the pion fieldsπa is given by

L =
1
2
(∂ν πa)(∂ν πa)+ i2µI fπ(∂0π3)+ i2µI

[

(∂0π1)π2− (∂0π2)π1]

+
1
2

m2
ππaπa−2µ2

I (π1π1+π2π2). (4.4)

In order to make contact with the results from the Monte-Carlo evaluation of the PNJL model with
fluctuations of the mean field only, it is sufficient to take thestatic part of the Lagrangian into
account. The partition function for this static part is

Zstatic =

∫ 3

∏
a=1

dπa exp

{

−V
T

[

1
2

m2
ππaπa−4µ2

I (π+π−)

]}

. (4.5)

From the definition ofχud (4.3) we have

χ (π)
ud = − 2

VTm2
π
=−2 T2

k
1

m2
π
, (4.6)

setting againV = k/T3. This prediction can be compared directly with our Monte-Carlo PNJL
results, provided we take the temperature dependence of thepion mass into account, using the
relation given in [8].

Fig. 2 (right panel) demonstrates that the picture so obtained from the chiral effective La-
grangian is completely consistent with our Monte-Carlo calculations in the PNJL model, as far
as the pionic contributions toχud are concerned. From the figure it also follows that the chiral-
perturbation-theory prediction for this coefficient is reliable until aroundT/Tc ≃ 0.7.

Figure 2: Right panel: scaled pionic contribution to the off-diagonal susceptibility compared with the ChPT
prediction. All Monte-Carlo PNJL results are multiplied bythe volumeVk/V64 and therefore scale with the
k = 64 curve, using Eq. (4.6). Left panel: temperature dependence of the flavor off-diagonal susceptibility
χud in the Monte-Carlo approach to the PNJL model, usingk = 64 (LT = 4). Lattice data [9, 10] with the
same volume aspect ratioLT and different pion masses are also shown for orientation.

4.3 Comparison with lattice data

Lattice-QCD studies ofχud have been carried out for example in Refs. [9, 10], both withk= 64
but with different quark masses, corresponding to pion massesmπ = 230 MeV and 770 MeV. These
lattice results are compared to our Monte-Carlo PNJL computations (using the physical pion mass)
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in Fig. 2. The shape of theχud signal is quite well reproduced within the large error band of the
lattice data. The difference between lattice results computed with different pion masses is now
quite plausible. Given that the pionic fluctuations dominate over those from theA8 component of
the Polyakov-loop field, this behavior is just what one expects from Eq. (4.6). At the same time,
one would expect that lattice simulations performed ideally with physical quark masses would
actually yield even larger magnitudes ofχud than those withmπ = 230 MeV. The Monte-Carlo
results notably include only the pionic zero modes. Finite-momentum fluctuations would tend to
further increase the pionic effects inχud.

5. Conclusions

In this work we have applied standard Monte-Carlo techniques to a PNJL model in order to go
beyond the saddle-point approximation. This becomes important when the system is considered in
a finite volume. The strength of the fluctuations introduced in this way depends on the size of the
volume.

The inclusion of such beyond-mean- field fluctuations in a finite volume does affect the sus-
ceptibilities significantly. We find that their impact is crucial for the evaluation of higher-order
Taylor expansion coefficients of the pressure. Our result from a Monte-Carlo computation agrees
well with lattice data using the samek for the Euclidean volume. The role of pionic zero-mode
fluctuations is clarified showing fully consistent results with those from chiral perturbation theory
for temperatures belowTc.
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