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temperatures. We also identify the heavy quark transport contribution at the spectral function

level for the first time.

The XXVIII International Symposium on Lattice Filed Theory
June 14-19, 2010
Villasimius, Sardinia Italy

∗Speaker.
†Present address: Physics Department, Brookhaven NationalLaboratory, Upton, NY 11973, USA.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
8
0

charmonium correlation and spectral functions at finite temperature H.-T. Ding

Considerable interests on the charmonium states in the medium [1] have been triggered ever
since the proposal of considering the dissolution of the charmonium states as a signal of the forma-
tion of QGP [2]. However, the understanding of the fate of thecharmonium states in the medium
still remains very difficult. The potential model approach at finite temperature is still under scrutiny
since the potential used in the Schrödinger equation is not rigorously defined [3]. Remarkable
progress has been made recently in the heavy quark effectivetheory at finite temperature [4], where
the potential can be rigorously defined. However, it requires scales to be hierarchically ordered.
More recently, a new approach based on the path integral formalism has been proposed [5]. It
needs further research since the effects of the medium on theheavy quark in this approach is mod-
eled with only Coulomb interaction. First principle calculations in lattice QCD are thus crucially
needed to determine the properties of the charmonium statesin the hot medium.

With the lattice QCD approach [6], the properties of the charmonium, which can be directly
seen from the spectral function, are contained in the Euclidean time correlation functions. The
extraction of spectral functions from correlators is rather difficult due to the limited number of
points in temporal direction required to perform an analytic continuation from imaginary to real
time. In this work, we present the analysis results of charmonium properties at both the correlator
and spectral function level. Previous work has been reported in Ref. [7,8].

The charmonium correlators at vanishing momentum are calculated using:

GH(τ ,T) = ∑
~x

〈 JH(τ ,~x) J†
H(0,~0) 〉T . (1)

JH is a suitable mesonic operator, here we consider a local operator of q̄(τ ,~x)ΓHq(τ ,~x), where
ΓH = γi ,γ5 for vector (Vii ) and pseudo-scalar (PS) channels, respectively. The temperatureT is
related to Euclidean temporal extentaNτ by T = 1/(aNτ ), wherea is the lattice spacing. Through
analytic calculation, the correlation function can be related to the spectral function as the following:

GH(τ ,T) =
∫ ∞

0
dω σH(ω ,T) K(τ ,T,ω), (2)

where the kernelK is given byK(τ ,T,ω) = cosh(ω(τ − 1
2T ))/sinh( ω

2T ). The spectral function
σ(ω) contains all the information of the hadron properties in themedium and is the key quantity to
be investigated. For instance, the dissociation temperature can be read from the deformation of the
spectral function and the heavy quark diffusion constantD relates to the vector spectral function as

D =
π

3χ00
lim
ω→0

3

∑
i=1

σ ii
V(ω ,T)

ω
, (3)

whereχ00 is the quark number susceptibility.
Inverting Eq. (2) to obtain the spectral function at finite temperature is hampered mainly by

two issues: the temporal extent is always restricted by the temperature,aτ ≤ 1/T; the spectral
functions we want to have should be continuous and have a degree of freedom ofO(1000) but
the correlators are calculated in the discretized time slices with limited numbers, typicallyO(10),
which makes the inversion ill-posed. Thus the normalχ2 fitting would be inconclusive. Maximum
Entropy Method (MEM) is currently one of the best tools in theliterature to solve the problem [9].
It is based on the Bayesian algorithm and requires the prior knowledge of spectral functions as an
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β a [fm] a−1[GeV] Lσ [fm] cSW κ N3
σ ×Nτ T/Tc Ncon f

7.793 0.010 18.974 1.33 1.310381 0.13200 1283×96 0.73 234
1283×48 1.46 461
1283×32 2.20 105
1283×24 2.93 81

Table 1: Lattice parameters.

input. The only parameter in the MEM analysis is the so called“default model", which provides
the prior information of the spectral function, e.g. the spectral function should be positive-definite.

The standard Wilson plaquette action for the gauge field and the non-perturbativelyO(a) im-
proved clover fermion action for charm quarks are implemented in the simulation. The mass of
vector meson is tuned to the physicalJ/ψ mass. We measured correlation functions on very fine
quenched lattices with a relatively large size of 1283×96, 1283×48, 1283 ×32 and 1283 ×24 at
0.73 Tc, 1.46 Tc, 2.20 Tc and 2.93 Tc, respectively. The lattice parameters are shown in Table 1.

We first analyze the temperature dependence of charmonium states at the correlator level. One
constructs [10]

Grec(τ ,T;T ′) =
∫ ∞

0
dω σ(ω ,T ′)

cosh(ω(τ −1/2T))
sinh(ω/2T)

, (4)

to study the difference of the spectral function at temperature T andT ′. The deviation ofG(τ ,T)
from Grec(τ ,T;T ′) indicates any modifications of the spectral function at temperaturesT from the
one at temperatureT ′. One normally needs a technique to obtain the spectral function σ(ω ,T ′) at
a reference temperatureT ′ and consequently the evaluation of Eq. (4) suffers from the uncertainty
of the determination of the spectral function brought by thecertain technique. We found a useful
exact relation, which is a generalization of Ref. [11], as follows:

cosh[ω(τ −Nτ/2)]
sinh(ωNτ/2)

≡
N′

τ−Nτ+τ

∑
τ ′=τ ; τ ′+=Nτ

cosh[ω(τ ′−N′
τ/2)]

sinh(ωN′
τ/2)

, (5)

whereT ′ =(aN′
τ)

−1, T =(aNτ)
−1, τ ′ ∈ [0, N′

τ −1], τ ∈ [0, Nτ −1], N′
τ =m Nτ , m∈Z

+. Nτ and
N′

τ are the number of time slices in the temporal directions at temperatureT andT ′, respectively.
τ denotes the time slice of the correlation function at temperatureT while τ ′ denotes the time slice
of the correlation function at temperatureT ′. The sum ofτ ′ on the right hand side of Eq. (5) starts
from τ ′ = τ with a step lengthNτ to the upper limitN′

τ −Nτ + τ . After puttingσ(ω ,T ′) into both
sides of the above relation and performing the integration over ω , one immediately arrives at:

Grec(τ ,T;T ′) =
N′

τ−Nτ+τ

∑
τ ′=τ ; τ ′+=Nτ

G(τ ′,T ′), (6)

which shows the evaluation ofGrec(τ ,T;T ′) can be done directly from the correlatorG(τ ′,T ′) at
T ′. In what follows, we suppressT ′ in Grec(τ ,T;T ′).

The ratiosG(τ ,T)/Grec(τ ,T) are shown in Fig. 1. TheGrec are obtained from the correlator
data at 0.73Tc through Eq. (6). In the left plot of Fig. 1 one can see that the ratios in thePSchannel
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Figure 1: The ratioG(τ,T)/Grec(τ,T) in PS(left) andVii (right) channels atT = 1.46, 2.20 and 2.93Tc.

at all temperatures decrease monotonically with increasing distance. The temperature effects set in
at a shorter distance at a higher temperature. At the largestdistances, the ratios deviate from unity
at around 5%, 8% and 12% at 1.46, 2.20 and 2.93Tc, respectively. The results for theVii channel
are shown in the right plot of Fig. 1. Different from the case in thePSchannel, the ratios increase
monotonically with increasing distance. At the largest distances, the ratios have a larger deviation
from unity compared with the results in thePSchannel. The deviation at the largest distance at
1.46 Tc is around 16% and it is comparable to the values at higher temperatures.
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Figure 2: The ratioGsub(τ,T)/Gsub
rec(τ,T) (Gdiff (τ,T)/Gdiff

rec(τ,T)) in PS (left) andVii (right) channels at
T = 1.46, 2.20 and 2.93Tc. The “diff" and “sub" stand for the results of the ratioGdiff/Gdiff

rec andGsub/Gsub
rec.

The large temperature dependence ofG(τ ,T)/Grec(τ ,T) in theVii channel could be due to the
possible zero mode contributions. To suppress the zero modecontribution we evaluate the ratio of
the differences of the neighboring correlators to the difference of the corresponding reconstructed
correlators [12]

Gdiff (τ ,T)
Gdiff

rec(τ ,T)
≡

G(τ ,T)−G(τ +1,T)
Grec(τ ,T)−Grec(τ +1,T)

, (7)

which equals the ratio of the time derivative of the correlators to the time derivative of the recon-
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structed correlators atτ +1/2. One can also check the ratio of midpoint subtracted correlators [13]

Gsub(τ ,T)
Gsub

rec(τ ,T)
≡

G(τ ,T)−G(Nτ/2,T)
Grec(τ ,T)−Grec(Nτ/2,T)

. (8)

In those two ratios aτ independent constant cancels in the correlator.
The results forGsub/Gsub

rec and Gdiff/Gdiff
rec in PS (left) andVii (right) channels are shown in

Fig. 2. The ratiosGsub/Gsub
rec andGdiff/Gdiff

rec give similar results at all the distances. Seen from the
right panel of Fig. 2 the magnitude of the measured vector correlator to the reconstructed correlator
reduces dramatically after the implementation of the difference of neighboring correlators (Eq. (7))
and mid-point subtracted correlators (Eq. (8)). At 1.46 Tc the ratio is more or less unity at all
distances, at 2.20 Tc and 2.93 Tc the ratio becomes even smaller than unity at large distances. The
zero mode contribution accounts for most temperature dependence of the ratioG/Grec at least at
1.46 Tc seen in Fig. 1. The deviations of the ratios from unity in the PS channel shown in the right
panel of Fig. 2 are also reduced. However, the effect is not asstrong as that in theVii channel and
the values at the largest distance are shifted up only about 3% at both 1.46Tc and 2.20Tc and about
6% at 2.93 Tc compared with the results in Fig. 1. Comparing the results for theVii channel with
those for thePSone in Fig. 2, we find the ratiosGsub/Gsub

rec (Gdiff/Gdiff
rec) in these two channels have

similar behavior at all distances at two higher temperatures 2.20 Tc and 2.93 Tc. However, they
differ at 1.46 Tc. The phenomenon we observe here might suggest thatJ/ψ could survive up to
1.46 Tc and starts to melt at 2.20 Tc, andηc might be melted already at 1.46 Tc.

One has to note that the comparison of the measured correlator with the reconstructed correla-
tor can only give a rough idea of the magnitude of any medium effects at a certain temperature. To
really explore the properties of the charmonium states, onehas to go to the spectral function level.
Thus it is crucial to extract the spectral function from the correlators using MEM.

In the MEM analysis, we use number of points in the investigated energy regionNω = 8000,
the minimum energyaωmin = 0.000001 and implement the modified kernelK∗ = tanh(ω/2) ·K [8,
14] to explore the low energy behavior of spectral function [15]. The default model we used in the
PSchannel is a normalized free lattice spectral function and in theVii channel is a normalized free
lattice spectral function with a transport peak modeled by aBreit-Wigner distribution at smallω .
Here we show the spectral functions inPSandVii channels with statistical uncertainties1.

The statistical error is obtained from the Jackknife method. Quite often the statistical error is
given on the integral of the spectral functionσ(ω) over a certainω region in the spectral function
plot [10, 17]. However, it is not straightforward to get a feeling of how big the error is on the
spectral function itself. Here we rather calculate the Jackknife error on each point of the spectral
function. We show the results forPS(left) andVii (right) channels in the intermediate frequency
region in Fig. 3 and show the transport part of spectral functions in theVii channel in Fig. 4. In
both figures, shaded areas denote the Jackknife errors and solid lines inside the shaded areas are
the mean values of spectral functions.

From the left plot in Fig. 3 one can see that at 0.73Tc the spectral function in thePSchannel has
large uncertainties in the amplitude at the point which corresponds to the ground state peak location
in the mean spectral function. However, even at the lower endof the error bar, the amplitude is still

1The systematic error analyses have been performed in Ref. [16], which do not change the general results shown in
Fig. 3 and Fig. 4.
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Figure 3: The statistical errors for the output spectral functions inPS(left) andVii (right) channels at all
available temperatures. The shaded areas are the errors of the output spectral functions. The mean values
are the solid lines inside the shaded areas.
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Figure 4: Left: the statistical errors for the transport part of output spectral functions in theVii channel at all
available temperatures. The shaded areas are the errors of the output spectral function. The mean values are
the solid lines inside the shaded areas. Right: the quark number susceptibilityχ00/T2 versusT/Tc.

larger than the peak amplitudes at the higher temperatures within the errors. The peak location of
the ground state peak at 0.73 Tc might be shifted to a lower energy ofω ≈ 3 GeV or to a higher
energy atω ≈ 3.6 GeV. In the latter case, the peak location would have the same peak location as
the spectral function at 1.46 Tc but with a much larger amplitude and smaller width. At 2.23 Tc

there is hardly a peak structure within the statistical errors. At 2.93Tc the spectral function flattens.
Thus this picture suggestsηc is “partly" melted at 1.46 Tc and dissolves at higher temperatures. In
the right plot of Fig. 3, we focus on the resonance part of the spectral function in theVii channel.
One sees that the peak location of the spectral function at 1.46Tc does not have an overlap with the
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peak location of the spectral function at 0.73 Tc. The amplitudes between these two differ a lot. At
both 2.20 Tc and 2.93 Tc there are hardly any peak structures and at 2.93 Tc the spectral function is
flattened. This picture indicatesJ/ψ is already melted at 1.46 Tc.

The statistical uncertainties of the transport peaks in theVii channel are shown in the left
plot of Fig. 4. The amplitude of the transport peak atω = 0 gives the value of the heavy quark
diffusion constant. The uncertainties of both, amplitudesand widths of the peak, are relatively
small. Through Eq. (3) andχ00/T2 shown in the right plot of Fig. 4, we getDT very roughly to be
0.28 at 1.46Tc and findDT increases with increasing temperatures. The precise determination of
DT needs further detailed study.

In summary, our analysis suggests thatJ/ψ is melted already at 1.46 Tc andηc starts to dis-
solve at 1.46 Tc and does not exist at higher temperatures. We also identify the transport contribu-
tion at the spectral function level for the first time.
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