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Considerable interests on the charmonium states in theumeldi] have been triggered ever
since the proposal of considering the dissolution of therobaium states as a signal of the forma-
tion of QGP [2]. However, the understanding of the fate ofdtharmonium states in the medium
still remains very difficult. The potential model approatfimite temperature is still under scrutiny
since the potential used in the Schrédinger equation isigotausly defined [3]. Remarkable
progress has been made recently in the heavy quark efféictoey at finite temperature [4], where
the potential can be rigorously defined. However, it requseales to be hierarchically ordered.
More recently, a new approach based on the path integralaleem has been proposed [5]. It
needs further research since the effects of the medium dmetdngy quark in this approach is mod-
eled with only Coulomb interaction. First principle calatibns in lattice QCD are thus crucially
needed to determine the properties of the charmonium statles hot medium.

With the lattice QCD approach [6], the properties of the af@mium, which can be directly
seen from the spectral function, are contained in the Eeafidtime correlation functions. The
extraction of spectral functions from correlators is rattificult due to the limited number of
points in temporal direction required to perform an analgibntinuation from imaginary to real
time. In this work, we present the analysis results of chaioma properties at both the correlator
and spectral function level. Previous work has been regont®ef. [7, 8].

The charmonium correlators at vanishing momentum are ledémliusing:

G (T, T) =3 (I (1,%) J(0,0) )r. (1)
X
Ju is a suitable mesonic operator, here we consider a locabtypeof q(1,X)I'4q(7,X), where
Ny = ¥, for vector ;) and pseudo-scalaP§ channels, respectively. The temperatiirés
related to Euclidean temporal extai; by T = 1/(aN;), wherea is the lattice spacing. Through
analytic calculation, the correlation function can betelato the spectral function as the following:

GH(T,T):/OOOdw on(w,T)K(T,T,w), 2

where the kerneK is given byK(7,T,w) = cosHw(T — 5))/sinh(£). The spectral function
o (w) contains all the information of the hadron properties inrttezlium and is the key quantity to
be investigated. For instance, the dissociation temperaan be read from the deformation of the
spectral function and the heavy quark diffusion conskantlates to the vector spectral function as

D= jim 5 M@T) 3)
3Xoo waoi; ()
wherexoo is the quark number susceptibility.

Inverting Eq. (2) to obtain the spectral function at finitenfeerature is hampered mainly by
two issues: the temporal extent is always restricted by ehgperaturear < 1/T; the spectral
functions we want to have should be continuous and have a&degrfreedom o#’(1000) but
the correlators are calculated in the discretized timesligith limited numbers, typically’(10),
which makes the inversion ill-posed. Thus the norpafitting would be inconclusive. Maximum
Entropy Method (MEM) is currently one of the best tools in literature to solve the problem [9].
It is based on the Bayesian algorithm and requires the priowledge of spectral functions as an
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B a[fm] al[GeV] Lg [fm] Csw K N3 xN;  T/Te Neont
7.793 0.010 18.974 1.33  1.310381 0.13200 31286 0.73 234
128 x 48 1.46 461

128 x32 220 105

128 x24 293 81

Table 1: Lattice parameters.

input. The only parameter in the MEM analysis is the so cdltefault model”, which provides
the prior information of the spectral function, e.g. theatmd function should be positive-definite.
The standard Wilson plaquette action for the gauge field badhon-perturbatively’(a) im-
proved clover fermion action for charm quarks are impleraérnn the simulation. The mass of
vector meson is tuned to the physiddlyy mass. We measured correlation functions on very fine
quenched lattices with a relatively large size of 1286, 128 x 48, 128 x 32 and 128 x 24 at
0.73 T, 1L46T;, 220 T; and 293 T, respectively. The lattice parameters are shown in Table 1.
We first analyze the temperature dependence of charmonatessit the correlator level. One
constructs [10]
cosh(w(T—1/2T)) @)
sinh(w/2T) ~
to study the difference of the spectral function at tempeeaf andT’. The deviation ofG(1,T)
from Gre(T, T; T') indicates any modifications of the spectral function at terauresl from the
one at temperatur€’. One normally needs a technique to obtain the spectralitmot(w, T') at
a reference temperatulé and consequently the evaluation of Eq. (4) suffers from tieettainty
of the determination of the spectral function brought bydbgain technique. We found a useful
exact relation, which is a generalization of Ref. [11], difes:

GreC(T,T;T’):/0 dw o(w,T")

cosHw(t—N;/2)] NN cosh(r' — N /2)] .
sinh(wN;/2) T/:T;Z—i-:Nr sinh(wN!/2) ®)

whereT’' = (aN;)™ 1, T=(aN;)™%, 7/€[0,N;—1], T€[0,N;—1], N.=mN;, meZ*. N;and
N; are the number of time slices in the temporal directionsraptratureT andT’, respectively.

T denotes the time slice of the correlation function at terajpgeT while T’ denotes the time slice
of the correlation function at temperatufé The sum oft’ on the right hand side of Eg. (5) starts
from T/ = T with a step lengthN; to the upper limitN; — N; + 7. After puttingo(w, T’) into both
sides of the above relation and performing the integrati®r @, one immediately arrives at:

N; —N¢+T
Grec(LT;T/) = Z G(TlaT/)a (6)
U'=T; T+=N;

which shows the evaluation @.c(7,T;T’) can be done directly from the correlaté(1’,T’) at
T’. In what follows, we suppresE’ in Geec(T,T;T’).

The ratiosG(1,T)/Grec(T, T) are shown in Fig. 1. Th& are obtained from the correlator
data at 073 T through Eg. (6). In the left plot of Fig. 1 one can see that #ti®s in thePSchannel
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Figure 1: The ratioG(t1,T)/Grec(T, T) in PS(left) andV; (right) channels af = 1.46, 2.20 and 2.93..

at all temperatures decrease monotonically with incrgagistance. The temperature effects set in
at a shorter distance at a higher temperature. At the ladigsinces, the ratios deviate from unity
at around 5%, 8% and 12% at 1.46, 2.20 and Z83espectively. The results for thg channel
are shown in the right plot of Fig. 1. Different from the casd@tiePSchannel, the ratios increase
monotonically with increasing distance. At the largestatises, the ratios have a larger deviation
from unity compared with the results in tlSchannel. The deviation at the largest distance at
1.46 T is around 16% and it is comparable to the values at higherdestyres.
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Figure 2: The ratioGS“%(t,T)/Gisd(t, T) (G (1, T)/GUl (1, T)) in PS(left) andVj (right) channels at
T =146, 2.20 and 2.93. The “diff" and “sub" stand for the results of the ra@d" /GU andGSU>/GSLP

rec-

The large temperature dependenc&0of, T)/Grec(T, T) in theV; channel could be due to the
possible zero mode contributions. To suppress the zero cwatebution we evaluate the ratio of
the differences of the neighboring correlators to the diffiee of the corresponding reconstructed
correlators [12]

GIT(r,T)  G(1,T)-G(1+1,T)
GU(T,T) ~ Grec(T,T) —~ Greo(T+1,T)’
which equals the ratio of the time derivative of the cormigitto the time derivative of the recon-

(7)
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structed correlators at+1/2. One can also check the ratio of midpoint subtracted cuioed [13]

G(r,T) _ G(1,T)—G(N:/2,T)
GH(T,T) ~ GreoT,T) — Grec(N; /2,T)

(8)

In those two ratios @ independent constant cancels in the correlator.

The results forGS'®/GsuP and GUf /GAfl in PS (left) andVj (right) channels are shown in
Fig. 2. The ratiosz"?/Gu> and G4 /GUTt give similar results at all the distances. Seen from the
right panel of Fig. 2 the magnitude of the measured vectaetor to the reconstructed correlator
reduces dramatically after the implementation of the diffiee of neighboring correlators (Eq. (7))
and mid-point subtracted correlators (Eq. (8)). A48T the ratio is more or less unity at all
distances, at.20 T, and 293 T, the ratio becomes even smaller than unity at large distaridess
zero mode contribution accounts for most temperature digrere of the ratids/Gyec at least at
1.46 T; seen in Fig. 1. The deviations of the ratios from unity in tl&dhannel shown in the right
panel of Fig. 2 are also reduced. However, the effect is netrasg as that in the; channel and
the values at the largest distance are shifted up only aléwatdoth 146 T, and 220 T, and about
6% at 293 T, compared with the results in Fig. 1. Comparing the resultsifeV; channel with
those for thePSone in Fig. 2, we find the ratiocgS'?/GSub (GUTf /GUiff) in these two channels have
similar behavior at all distances at two higher temperat@20 T, and 293 T.. However, they
differ at 146 T.. The phenomenon we observe here might suggestlthatcould survive up to
1.46 T, and starts to melt at 20 T, andn. might be melted already at46 T..

One has to note that the comparison of the measured correlglitcthe reconstructed correla-
tor can only give a rough idea of the magnitude of any medidiecef at a certain temperature. To
really explore the properties of the charmonium stateshaisgo go to the spectral function level.
Thus it is crucial to extract the spectral function from tloerelators using MEM.

In the MEM analysis, we use number of points in the investidatnergy regiom,, = 8000,
the minimum energgwmin = 0.000001 and implement the modified kerkel=tanh(w/2) -K [8,

14] to explore the low energy behavior of spectral functid®][ The default model we used in the
PSchannel is a normalized free lattice spectral function anithé\;; channel is a normalized free
lattice spectral function with a transport peak modeled Byreit-Wigner distribution at smal.
Here we show the spectral functionsRSandV; channels with statistical uncertainttes

The statistical error is obtained from the Jackknife methQdite often the statistical error is
given on the integral of the spectral functioric) over a certairw region in the spectral function
plot [10, 17]. However, it is not straightforward to get alieg of how big the error is on the
spectral function itself. Here we rather calculate the Kiaif& error on each point of the spectral
function. We show the results f&S (left) andV; (right) channels in the intermediate frequency
region in Fig. 3 and show the transport part of spectral fonstin theV; channel in Fig. 4. In
both figures, shaded areas denote the Jackknife errors Addirses inside the shaded areas are
the mean values of spectral functions.

From the left plot in Fig. 3 one can see that at3T. the spectral function in theSchannel has
large uncertainties in the amplitude at the point whichegponds to the ground state peak location
in the mean spectral function. However, even at the lowerdtige error bar, the amplitude is still

1The systematic error analyses have been performed in F&fvjhich do not change the general results shown in
Fig. 3 and Fig. 4.
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Figure 3: The statistical errors for the output spectral function®#(left) andV; (right) channels at all
available temperatures. The shaded areas are the errdrs obitput spectral functions. The mean values
are the solid lines inside the shaded areas.
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Figure4: Left: the statistical errors for the transport part of odtgpectral functions in the; channel at all
available temperatures. The shaded areas are the errbes afitput spectral function. The mean values are
the solid lines inside the shaded areas. Right: the quarkeususceptibilityxpo/ T2 versusT /Te.

larger than the peak amplitudes at the higher temperatutbsihe errors. The peak location of
the ground state peak at/3 T, might be shifted to a lower energy aj ~ 3 GeV or to a higher
energy atw ~ 3.6 GeV. In the latter case, the peak location would have thegzaak location as
the spectral function at.46 T; but with a much larger amplitude and smaller width. A22T.
there is hardly a peak structure within the statisticalrstrét 293 T the spectral function flattens.
Thus this picture suggestg is “partly” melted at 146 T, and dissolves at higher temperatures. In
the right plot of Fig. 3, we focus on the resonance part of trexal function in th&/; channel.
One sees that the peak location of the spectral functior&tT} does not have an overlap with the
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peak location of the spectral function af8 T,. The amplitudes between these two differ a lot. At
both 220 T, and 293 T, there are hardly any peak structures and.@8 Z; the spectral function is
flattened. This picture indicatdg ¢ is already melted at.46 T.

The statistical uncertainties of the transport peaks inthehannel are shown in the left
plot of Fig. 4. The amplitude of the transport peakuat= O gives the value of the heavy quark
diffusion constant. The uncertainties of both, amplituded widths of the peak, are relatively
small. Through Eq. (3) angoo/T?2 shown in the right plot of Fig. 4, we g&T very roughly to be
0.28 at 1.46T; and findDT increases with increasing temperatures. The precisendigi@ion of
DT needs further detailed study.

In summary, our analysis suggests tBaty is melted already at.46 T, and . starts to dis-
solve at 146 T; and does not exist at higher temperatures. We also ideh&fyransport contribu-
tion at the spectral function level for the first time.
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