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1. Introduction

The exploration of the phase diagram of QCD and its thermodynamics dtengiag prob-
lems and central goals of lattice simulations at finite temperature and densif{l]] $&rea review.
In this work we present Monte Carlo results for the thermodynami&JoN) gauge theories with
number of colorsN = 2, ..., 6, in 2+ 1 dimensions. These theories are closely related with those in
3+ 1 dimensions and are more numerically feasible. We focus on the confimsdPhk: T, and
study thermodynamic variables such as the trace of the energy-momentam peassure, energy
and entropy density using the integral method. We also investigate scalipgriges withN of
the different observables and compare our results with the predictidamet) assuming that the
thermodynamics of the system could be described as a gas of free gludtalishall show that
a relevant improvement in the comparison near the critical point is obtainkaling also higher
orders in the glueball spectrum and assuming for these terms a bosorgadstsicription.

2. Thermodynamics on thelattice

Before discussing the thermodynamics3M(N) lattice gauge theories in21 dimensions,
we sketch some basic thermodynamics relations in the continuum. From the pdttitaiion
Z(T,V) we get the free energy density as,

f= —\I/ logZ(T,V), (2.1)

whereT is the temperature andis the spatial volume. In the thermodynamic limit the pressure is
related to the free energy density as,
p=—Ilim f. (2.2)

V —00

In the following we will assume to have a large, homogeneous system, soehatetbsure can be
identified as minus the free energy. Once the pressure is calculated m&iarflof the tempera-
ture p(T), the other thermodynamics variable are derived. For example, the tralce efhergy-

momentum tensag — 2p is,
E-2p 0 (P

5 ot (ﬁ) ‘ (2.3)
The energy densitg = TZ%(p/T) is then obtained by addingp2T? to this result while the
entropy is given by,

Etp_0dp
T 0T
On the lattice the temperature and volume of the thermodynamic system are deddognihe
lattice sizeN; x N2 and the lattice spacing

(2.4)

1

_ 2 - =
V = (aNs)“, T_aNT'

(2.5)

In this work, we perform a non-perturbative studySi(N) Yang-Mills theories withN =
2,3,4,5,6 colors regularized on a finite lattice, with lattice spacngith Ng points along the two
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space-like directions anid; points along the time-like direction. We use the Wilson action for a
genericSU(N) gauge group,

Su(Uu) = T SUn). SUP) =P (1— ;Remp> , (2.6)

whereP denotes one of theNg x N2 plaquettes on the lattice andp is the product of the -
matrices (withu = 0,1,2) around each & 1 plaquette. On the lattice the partition function is
given by,

z— / [ U (%) exp(— S (U (X)) 2.7)
X,
In the continuum limit eq.[(2}6) becomes the standard Yang-Mills action proic,
2N
B= ad’ (2.8)

In 2+ 1 dimensiong? has dimensions of mass and sets the scale.

Although in principle all thermodynamics variables can be calculated fromréeednergy
density, in practice, a direct computation of the partition function on the latticetipassible.
Here we use the integral method of Refd. [[2, 3], as in Rgf. [4]. Wedakiulate the action, i.e.,
the derivative of the partition function with respect to the bare cougfindJp to an integration
constant, resulting from the lower integration lirfi, the pressure is then obtained by integrating,

Nz, N B
e 3 o) N? / dB'AS(B’, N, Ns) (2.9)
T JBo
where in 2+1 dimensions
AS(B’,Ng,Ns) = 3(Po)p — (Ps+2P;) . (2.10)

HereP;; denote the expectation values of space-space, space-time plaquefiestively and?
is the plaquette value on symmetric lattidé® Using egs. [(2]9) and (2]10) we can write the trace
of the energy-momentum tensér {2.3) as,

€-2p_ L0 (P _ 3 T dB
=T <T3)_NTAS(B (TC>,NT,NS)TdT. (2.11)

In order to obtain eq. [(2.]11) as a function Bf T, whereT, is the critical temperature of the
continuum theory, we need to relaf¢T. to 3, for any value ofN,

B=B(T/Tc). (2.12)

In practice,Tg—g is determined through a parametric fit (similar to the one performefl in [5] for
SU(3)) but for generidN. A good choice foi} [H] is o = B(T/Tc = 0.6), after checking from the
measurements th&l2 times the integrand i (Z]L1) is negligible at this temperature.
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3. SU(N) gaugetheoriesat large N: scaling properties

Let us investigate the largg-imit of eq. (2.12) inSU(N) gauge theories in2 1 dimensions.
To do so we need to relate some dimensionless ratios that in this limit become ¢{Bsikig],

say,

Mo c Te 0.88

— =4.10820) + — + ... — =0.9033)+ —5 +... 3.1

o = 410820+ by 5 =0.0033) 4+ (3.1)
wherec is a constant. Herg/c is the square root of the string tension at zero temperature in the
continuum theory.

Considering also that, if we keepN fixed, B scales a®l? (2.8) and from[[B[]7]

o 0.12
— =0.1975— — + ... 2
= 01975~ 5 (3.2)
we get
0.395\N2 0.24
o= —— + 3.3
v aB ap (33)

Combining these expressions we obtain the dependergénaierms of the temperatuie. To get
B(T), itis particularly convenient to set the temperature scale using/thgT ratio. To the first
order in3 we have

T T Vo_ ag

=——="—=T 3.4
T VoTe (0.395N2—0.24) (0.903+ §&8) G4

and using eq[(25) gives,

T
B=Ne— (0.35™?+0.13—0.211/N?) , (3.5)

C
which for N = 3 gives8 = 0.34 (to be compared with the expression given in Bialas et[&l. [5],
B =3.3N;{ + 1.5+ O(1/N;), which givesB = 0.33). Combining Eq.[(3]5) with the data froiff [8]
to get the correction to the scaling in the lafgdimit we obtain,

T
B= NT?(O.357N2 +0.13—0.211/N?) + (0.22N? - 0.5), (3.6)
Cc

which gives the dependence @fon the temperatur@ up to a first order correction to be used in

eq. 2.10).

4. Numerical results and discussions

We are now ready to evaluate the trace energy-momentum tensor ip eq). §2dldheck the
validity of the scaling dependence in ed. |3.6) by plotting the right hand dieeg.o (2.1]L) vs.
t= % This plot is expected not to be dependentband also ori\;).

The numerical simulations were performed using the Chroma libfaly [10]quluswn pro-
grams (forSU(2) and SU(4)). We evaluated\S for N; = 6 (and for SU(2) and SU(3) also for
N; = 8) and spatial vqumeN§ such that the aspect ratio was alwaygN; > 8. In agreement
with Ref. [§], we may safely assume that, in this temperature range, this ceniditenough to
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Trace of the energymomentum tensor in2L dimension

Trace of the energymomentum tensor in-21 dimension
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Figure 1. Left:The trace of the energy-momentum tensor v¥s= T/T. for SUN = 2,3,4,5,6). Right:
Magnified view, of the same, in the low temperature region.
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Figure 2: The trace of the energy-momentum tensor normalized to ttiedé&Stefan-Boltzmann (SB) limit

eliminate finite size effects in the spatial directions. A detailed description alsuits and of the
algorithms we used will be reported elsewhégré [13].

We report in fig[JL our estimates for the trace of the energy-momentum t&ise8U(3) data
are in perfect agreement with the one in R€f. [5]. Below the critical tenpex; there is a good
scaling withN. AboveT, the different curves split up and they appear to be ordered acgalin
the high temperature scaling law for the value\ofSee fig [P for the gauge groups(3,4,5,6).

As mentioned in the introduction our main goal was to compard thel. data with a glueball
gas model. We performed this comparison in three steps. First we assunged thebe dominated
by the lowest glueball state, then we included all the glueballs below the trtictpahreshold (for
which very precise numerical estimates exist) and finally, following the siiggeof [11], we try
to compare our data with the whole glueball spectrum, assuming for the gluabalfsatz inspired
by the effective bosonic string model. Details on the calculations can be faJf3].

The pressure associated with a single non-interacting, relativistic panpetées of masm
reads,

mT2 _ 1 m T
= Lie®®( k) (”m)

From Eq. [4.]l) we can reconstruct all thermodynamics quantities as expkanier. In particular,

(4.1)
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the trace of the energy-momentum tengor (2.3) can be written as

e-2p nm? 1 m
T3 a2k ex'“("‘?) ' (4.2)
This observable is particularly suited for this comparison since it can belatdd by numer-

ical simulations without being integrated ov@r(see Eq. [(2.11)). From the above equation we
obtain:
nra

2 1 m
AS— mZEexp(—k?). (4.3)

For the first two stages of the comparison we used the numerical values gfuiball masses
reported in[[P]. Given the precision of the data it is mandatory to keep imtouet scaling correc-
tions in this comparison. The most effective way to do this is to rewmt& as

m m+yo m

—=———=—(aN\y/o 4.4
and then use the scaling functions reportedJin [9]. We write here themections explicitly in the
SU(3) case, for the lowest massin the case of a lattice siZ¢; = 8 (the generalization to any
value ofN is straightforward). Using,

3367(50) , 41(L7)  465(110)

aﬁ: + , 4.5
B B B *.5)
and% = 4.329(41) we obtain,
m 3.367 4.1 465

Higher masses can be treated in the same way, using the data for theryatjas reported in [P].

We compare the results of this analysis with the data for the trace of the emerggntum tensor

in fig. B for N = 2 andN > 3. The blue and red lines correspond to the inclusion of the lightest
mass and the first eight masses, respectively. Itis easy to see thdttdhfadido reproduce the data
and suggest the necessity of taking into account the full spectrum digjlseising for instance a
string inspired ansatz.

To compare our results with the bosonic string predictions for the Hagepectrum (in the
same spirit as in Ref.[JlL1] ind) we extended to arbitrary dimensions the computation of the
density of states of the closed bosonic string (following [12]).

We found the following expression,

d-1 d
Pa-2(M) = () Tim ~2)tt (I;') M/, (4.7)
Inserting this expression in ed. (4.2) we found a remarkable agreenitbnthe data, even in the
region near the critical transitiofi [13]. This comparison is reported ifj faft¥or SU(2) and in
fig. B-right forN > 3.
We think that this type of analysis (which we plan to further improve in the fyitwik give
us the opportunity to test the string inspired glueball models (like for instarecksdiur-Paton one
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Figure 3: Comparison between contribution of the glueballs spectthmstring predictions with respect to
the trace energy-momentum tensoiStf(2) (Left) andSU(N > 3) (Right).

[[[4]) and also to better understand the many non trivial features aftisfiestring models which
have been up to now addressed only looking at observables relatedntettogiark potential or to
the width of the flux tube.
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