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We study some properties of the non-Abelian vacuum induced by strong external magnetic field.

For this purpose we use the quenched SU(3) lattice gauge theory with tadpole-improved Lüscher-

Weisz action and chirally invariant lattice Dirac operator. Within this approach the following

results have been obtained: The chiral symmetry breaking isenhanced by the magnetic field.

The corresponding chiral condensate depends on the field as afunction of powerν = 1.6±0.2.

There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other

magnetic properties have been calculated and compared withtheoretical estimations. Finally,

there are non-zero local fluctuations of the both chirality and electromagnetic current, which

grow with the magnetic field strength. These fluctuations canbe recognized as an evidence of

the Chiral Magnetic Effect (CME), which is observed by the STAR Collaboration in heavy ion

collisions at RHIC.
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1. Introduction

The modern experiments provide a possibility to discover new physical effects caused by pres-
ence of the strong (hadronic scale) magnetic field. At the Relativistic Heavy Ion Collider (RHIC)
at the first moments (τ ∼ 1 fm/c) of noncentral collision the very strong (B ∼ 1015T,

√
eB ∼ 300

MeV) magnetic fields appear[1, 4]. Such strong magnetic fields can be also created in ALICE
experiment at LHC, at the Facility for Antiproton and Ion Research (FAIR) at GSI and in the ex-
periment NICA in Dubna. The additional motivation for such discovery could also come from the
physics of the early Universe, where the strong fields (B ∼ 1016T,

√
eB ∼ 1 GeV) could have been

produced after the electroweak phase transition[6]. It seems interesting to find some properties
of strongly interacting matter, which can be relevant for these experiments or theoretical models.
Due to the nonperturbative nature of the effects we perform the calculations on the lattice. We use
quenched approximation for the simplicity and show that forsome class of problems it provides
values of the right order or even very close to the present estimations. It makes sense to suggest
this approximation for some further predictions.

This work has been done in spirit of the previous SU(2) lattice studies[7, 8, 9, 10] and here we
analyze SU(3) gauge theory to make some quantitative predictions, which one can directly compare
with QCD. Let us make a short list of effects caused by the magnetic field and studied in the paper.

The strong magnetic can enhance the chiral symmetry breaking. There are various models (see
Sec.3) which predict the growing of the chiral condensate asan order parameter. In all the models
dependence onB typically ranges from linear to quadratic behaviour, so we are interested in SU(3)
lattice predictions to check how close is the quenched approximation to this models.

The second effect is the chiral magnetization of the QCD vacuum. This effect has a para-
magnetic nature because the external magnetic field leads toorient quarks’ spins along the field.
Investigation of the vacuum magnetization is essential forthe properties of the nucleon magnetic
moments[20] and other nonperturbative effects of hadrons[22]. We calculate the magnetic suscep-
tibility and other quantities in Sec.4. In addition, the quarks develop an electric dipole moment
along the field due to local fluctuations of topological charge[9]. We study this effect in Sec.5.

Finally, the fluctuations of topological charge can be a source of the assymetry between num-
bers of quarks with different chiralities created in heavy-ion collisions. The so called “event-by-
event P- and CP-violation”[1] can be explained by this assymetry and observed at RHIC. So, our
aim is also to see any evidences of this effect in SU(3) lattice simulations, nevertheless they can
repeat qualitatively the SU(2) results[10].

2. Technical details

As a framework we use quenchedSU(3) lattice gauge theory with tadpole-improved Lüscher-
Weisz action [11]. To generate statistically independent gauge field configurations we make use
of the Cabibbo-Marinari heat bath algorithm. The lattice has been chosen of the size 144, with
lattice spacinga = 0.105f m, which means that we consider a zero-temperature situation. All
observables we present in the work have a similar structure:〈Ψ̄OΨ〉 for VEV of a single quantity
or 〈Ψ̄O1Ψ Ψ̄O2Ψ〉 for dispersions or correlators. HereO, O1, O2 are some operators in spinor
and color space. These expectation values can be expressed through the sum overM low-lying
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but non-zero eigenvaluesiλk of the chirally invariant Dirac operatorD (Neuberger’s overlap Dirac
operator[12]):

〈Ψ̄OΨ〉 = ∑
|k|<M

ψ†
k Oψk

iλk + m
(2.1)

and

〈Ψ̄O1Ψ Ψ̄O2Ψ〉 = ∑
k,p

〈k|O1|k〉〈p|O2|p〉− 〈p|O1|k〉〈k|O2|p〉
(iλk + m)(iλp + m)

, (2.2)

where all spinor and color indices are contracted and we omitthem for simplicity. Theλk are
defined by the equation

Dψk = iλkψk, (2.3)

whereψk are the corresponding eigenfunctions and the uniform magnetic field F12 = B3 ≡ B is
introduced as described in[7]. To perform calculations in the chiral limit one calculates the expres-
sion (2.1) or (2.2) for some non-zerom and average it over all configurations of the gauge fields.
Then one repeats the procedure for other quark massesm and extrapolate the VEV tom → 0 limit.

3. Chiral condensate

In this section we present some results for the chiral condensate

Σ ≡−〈0|Ψ̄Ψ|0〉, (3.1)

as a function of the magnetic fieldB. This quantity is quite useful as an order parameter for the
chiral symmetry breaking. The general tendency forΣ to grow with B was already obtained in
various models: in the chiral perturbation theory [13, 14] (Σ ∝ B for weak fields,Σ ∝ B3/2 for
strong fields), in the Nambu-Jona-Lasinio model [15] (Σ ∝ B2), in a confining deformation of the
holographic Karch-Katz model [16] (Σ ∝ B2), in D3/D7 holographic system [17] (Σ ∝ B3/2 for low
temperatures,Σ ∝ B for high temperatures) and in SU(2) lattice calculations [7](Σ ∝ B). Here our
aim is to see how the chiral condensate behaves in theSU(3) quenched model.

For this purpose we use the Banks-Casher formula [18], whichrelates the condensate (3.1)
with the densityρ(λ ) of near-zero eigenvalues of the Dirac operator:

Σ = lim
λ→0

πρ(λ )

V
, (3.2)

whereV is the four-volume of the Euclidean space-time. The result is shown on Fig.1(a).
In order to extract a power of the dependence we make a fit by thefollowing function:

Σ f it(B) = Σ0

[

1+

(

eB

Λ2
B

)ν]

, (3.3)

whereΣ0 ≡ Σ(0). The obtained fitting parameters are

Σ0 = [(228±3)MeV ]3 , ΛB = (1.31±0.04)GeV, ν = 1.57±0.23 (3.4)
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Figure 1: Chiral condensate

It would we also interesting to compare quantitatively the condensate obtained by the Banks-
Casher formula and one calculated by the expression (2.1) with O = 1. The result is shown on
Fig.1(b). The value of the condensate in absence of the magnetic field equalsΣ(0) = (230±5)MeV
which is not so far away from the value, which can be estimatedby the Gell-Mann-Oakes-Renner
formula[19]:

Σ(0) =
F2

π m2
π

2(mu + md)
≃ (240±10MeV )3 (3.5)

4. Chiral magnetization and susceptibility

In this section we calculate the quantity

〈Ψ̄σαβ Ψ〉 = χ(F)〈Ψ̄Ψ〉qFαβ , (4.1)

whereσαβ ≡ 1
2i

[

γα ,γβ
]

and χ(F) is some coefficient of proportionality (susceptibility), which

depens on the field strength.
This quantity was introduced in[20] and can be used to measure spin polarization of the quarks

in external magnetic field. The magnetization can be described by the dimensionless quantity
µ = χ ·qB so that

〈Ψ̄σ12Ψ〉 = µ〈Ψ̄Ψ〉 (4.2)

The expectation value (4.1) can be calculated on the latticeby (2.1) withO = σαβ . The result
is shown on Fig.2(a) (here for comparison we also plot seriesfor some finite quark mass). We can
see, that the 12-component grows linearly with the field, which agrees with[20]. This allows us to
find the chiral susceptibilityχ(0) ≡ χ0 through the slope of the dependence. After making a linear
approximation〈Ψ̄σ12Ψ〉 = Ω f iteB, where1

Ω f it ≡−1
3

χ f it
0 Σ0 (4.3)

1in our simulation we calculate the magnetization of the d-quark condensate, thusq =
∣

∣− e
3

∣

∣
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Figure 2: Expectation values of̄Ψσαβ Ψ and its square

we obtainΩ f it = (172.3±0.5)MeV and extractχ f it
0 (see below.)

The corresponding theoretical value can be expressed as[21]:

χ th
0 = − cχNc

8π2F2
π

, (4.4)

wherecχ is a dimensionless parameter, which according to the pion dominace idea[21] can be
chosen ascχ = 2. Fπ = 130.7MeV is the pion decay constant forNc = 3. Comparing this value
with our result we find a good agreement:

χ th
0 ≃−4.46GeV−2, χ f it

0 ≃−4.24GeV−2 (4.5)

The other interesting phenomenological quantity is the product of the chiral susceptibilityχ
and the condensate〈Ψ̄Ψ〉[22]. In our calculations it is equal to

−χ f it
0 〈Ψ̄Ψ〉 ≃ 52MeV, (4.6)

while from the QCD sum rules one can estimate this quantity asapproximately 50 MeV [23], which
is also close to our value.

5. Electric dipole moment

Other interesting effect of the magnetic field is that it induces a local electric dipole moment
along the field[9]. This quantity corresponds to thei0-components of the (4.1):

di(x) ≡ Ψ̄(x)σi0Ψ(x), i = 1,3 (5.1)

In the real CP-invariant vacuum the VEV of this quantity should be zero:〈di(x)〉 = 0, what we
actually can see in our computations (Fig.2(a)). Let us show, that fluctuations ofdi(x) can be
sufficiently strong. For this purpose we measure VEV’s (2.2)with O1 = O2 = σαβ . In the case

of i0-components it corresponds to dispersions of
−→
d . The result is shown on Fig.2(b), where we

see, that longitudinal fluctuations of the local dipole moment grow with the field strenght, while

5
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Figure 3: Fluctuations of the chirality and electromagnetic current/charge

transverse fluctuations are absent. Here and after we use the“IR” subscript to emphasize, that we
substract from the quantity its value atB = 0:

〈Y 〉IR(B) =
1
V

∫

V

d4x〈Y (x)〉B −
1
V

∫

V

d4x〈Y (x)〉B=0 (5.2)

This procedure removes all UV-divergences and provides us with a quantity, which is insensitive to
the UV-cutoff[10].

6. Some evidences of the Chiral Magnetic Effect

The nontrivial topological structure of QCD causes some unusual effects in the presence of
strong magnetic field. One example of a such effect is the Chiral Magnetic Effect (CME), which
generates an electric current along the field in the presenceof the nontrivial gluonic background[1,
2]. This effect has been observed by the STAR collaboration at RHIC[3, 5] in heavy-ion collisions
as a non-statistical asymmetry between numbers of positiveand negative particles emmited on
different sides of the reaction plane. This asymmetry can beinterpreted as existing of a local
imbalance between left- and right-handed quarks due to the quantum fluctuations of topological
charge. An explanation of the effect andSU(2) lattice studies can be found in[10, 24]. Here we
implement the same procedure for theSU(3) case and study the local chirality

ρ5 = Ψ̄(x)γ5Ψ(x) ≡ ρL(x)−ρR(x) (6.1)

and the electromagnetic current

jµ = Ψ̄(x)γµ Ψ(x). (6.2)

The expectation value of the first one can be computed by (2.1)with O = γ5 and withO = γµ for
the second one. The both VEV’s are zero, as expected, but the corresponding fluctuations obtained
from (2.2) are finite and grow with the field (see Fig.3).
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