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1. Introduction

The heavy-ion experiments at RHIC and soon LHC are probing deeper and deeper into the
high temperature region of QCD. As such more and more experimental results are presented that
require a more complete knowledge of finite temperature QCD. Naturally one turns to lattice QCD
to give some answers to the questions arising. However some questions of interest are notoriously
difficult to answer from a lattice perspective. This is in particular the case for the analysis of
spectral properties of hadron correlation functions. Although here the main interest is in extracting
information on hadronic spectral functions at low frequencies, this cannot be achieved without
good control over the large frequency region. Correlation functions thus need to be controlled at
short as well as large distances. High accuracy data on large lattices at several values of the cut-
off are needed to control finite volume and lattice cut-off effects. Only then a reliable continuum
extrapolation becomes possible which is a prerequisite for extracting dependable physics results.

In this combined talk and poster contribution we present results from a lattice analysis of
meson correlation functions at finite temperature [1]. We emphasize here our systematic analysis
of the finite volume and cut-off dependence of thermal meson correlation functions. This analysis
leads to the conclusion that we indeed can take the continuum limit for the vector and pseudo scalar
current correlation functions in a large Euclidean time interval. We also calculate several thermal
moments of hadron spectral functions to better explore the spectral properties at low frequencies.
We close with a discussion of the constraints arising from our analysis for the determination of the
electrical conductivity in the quark gluon plasma at finite temperature [2, 3].

2. Meson Correlation Functions

Our key observable of interest is the Euclidean correlation function of a given particle current,

Jν ≡ q̄(τ ,~x)γνq(τ,~x) , (2.1)

where choosing the appropriate gamma matrix we obtain the vector particle channels for γν = γµ

where µ = 0, ...,4 and the pseudo scalar for γν = γ5.
In this work we analyze the Euclidean temporal two-point correlation function for the above

channels at fixed momentum,

Gµν(τ,~p) = ∑
~x

Gµν(τ,~x)ei~p·~x, (2.2)

where

Gµν(τ ,~x) = 〈Jµ(τ ,~x)J†
ν(0,~0)〉, (2.3)

while we denote thermal expectation values with 〈...〉. In this work we will set the momentum to
zero, ~p = 0, and suppress the second argument in the hadronic correlation functions.

At high temperatures the spectrum of meson resonances is more and more changed by thermal
effects; the width of resonances will broaden and the onset of the continuum in the spectrum may
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shift. As a result the interest in the analysis of the above current-current correlation function shifts
to their representation in terms of a spectral function ρµν [4]:

Gµν(τ,T ) =
∫ ∞

0

dω
2π

ρµν(ω,T )
cosh(ω(τ −1/2T ))

sinh(ω/2T )
. (2.4)

From here on we denote with µν ≡ ii the sum over the space-like components of the vector spectral
function ρii, while the full vector spectral function is given by ρV ≡ ρ00 + ρii. We also use the
notation PS for µν ≡ 55. Note that the correlation function G00(τ ,T ) is connected to the net
number of quarks (q− q̄) in a given flavor channel, i.e., n0(τ) =

∫
d3xJ0(τ,~x). As the net quark

number is conserved, it does not depend on time, n0(τ) = n0. Thus the corresponding correlation
function is constant in Euclidean time and the spectral function is simply given by,

ρ00(ω) =−2πχqωδ (ω) , (2.5)

with the quark number susceptibility

χq =−
∫

d3x〈J0(τ,~x)J†
0 (0,~0)〉 . (2.6)

Consequently the time-like correlation function obeys the relation G00(τ ,T ) ≡ −χqT , which im-
mediately leads to an exact relation between Gii(τ,T ) and GV (τ ,T ):

Gii(τ,T ) = χqT +GV (τ,T ) . (2.7)

In the free field limit the spectral functions are seen to increase quadratically for large frequen-
cies ω . One obtains:

ρii(ω) = 2πχqωδ (ω)+
3

2π
ω2 tanh(ω/4T ) (2.8)

ρV (ω) = ρ00(ω)+ρii(ω) =
3

2π
ω2 tanh(ω/4T ) (2.9)

ρPS(ω) =
3

4π
ω2 tanh(ω/4T ) (2.10)

At finite temperature the exact cancellation of the δ -functions in the ρV (ω) spectral function is only
approximate, as ρ00(ω) continues to be proportional to a δ -function due to the connection with net
quark number, while the δ -function in ρii(ω) is subject to thermal effects. As a consequence this
contribution is smeared out into a Breit-Wigner shaped peak [5]:

ρii(ω)→ ρBW
ii (ω) = 2χq cBW

ωΓ/2
ω2 +(Γ/2)2 +(1+κ) · 3

2π
ω2 tanh(ω/4T ) , (2.11)

where κ parametrizes corrections to the high frequency behavior of the free field limit. This smear-
ing in the low frequency region is directly related to the appearance of finite transport coefficients
in the thermal medium, e.g. the electrical conductivity,

σ
T

=
Cem

6
lim
ω→0

ρii(ω)

ωT
, (2.12)

where Cem is the sum over the squared charges of the contributing quark flavors. The pseudo scalar
spectral function on the other hand does not per se contain an additional low frequency contribution;
a connection with transport phenomena is not expected.
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3. Thermal Moments of the Correlation Function

A useful set of observables that helps to characterize the structure of spectral functions, is
given by “thermal moments” of the spectral function at vanishing momentum. At a given order
we define these moments as the Taylor expansion coefficients of the correlation function expanded
around the midpoint of the Euclidean time interval1, i.e., around τT = 1/2,

G(2n)
H =

1
(2n)!

dGH(τT )
d(τT )2n

∣∣∣∣
τT=1/2

=
1

(2n)!

∫ ∞

0

dω
2π

(ω
T

)2n ρH(ω)

sinh(ω/2T )
(3.1)

and

GH(τT ) =
∞

∑
n=0

G(2n)
H

(
1
2
− τT

)2n

. (3.2)

The infinite temperature, free field limit of the correlation function can be calculated analyti-
cally. For massless quarks one obtains [6]:

G f ree
V (τT ) = 2G f ree

PS (τT ) = 6T 3
(

π(1−2τT )
1+ cos2(2πτT )

sin3(2πτT )
+2

cos(2πτT )
sin2(2πτT )

)
(3.3)

G f ree
ii (τT ) = T 3 +G f ree

V (τT ) (3.4)

Using these results the first three non-vanishing moments are then given by

G(0), f ree
V = 2G(0), f ree

PS =
2
3

G(0), f ree
ii = 2T 3 , (3.5)

G(2), f ree
H = 2G(2), f ree

PS =
28π2

5
T 3 , (3.6)

G(4), f ree
H = = 2G(4), f ree

PS =
124π4

21
T 3 . (3.7)

In our lattice simulation we will also analyze ratios of moments. In the free field limit they are
given by

R(2,0)
V, f ree =

G(2), f ree
V

G(0), f ree
V

= R(2,0)
PS, f ree =

14π2

5
' 27.635 (3.8)

R(2,0)
ii, f ree =

2
3

R(2,0)
V, f ree ' 18.423 (3.9)

R(4,2)
H, f ree =

155π2

147
' 10.407 , (3.10)

which can be obtained from the ratio of the mid-point subtracted correlation functions and the
corresponding free field values:

∆H(τT )

∆ f ree
H (τT )

=
GH(τT )−G(0)

H

G f ree
H (τT )−G(0), f ree

H

=
G(2)

H

G(2), f ree
H

(
1+(R(4,2)

H −R(4,2)
H, f ree)(

1
2
− τT )2 + ...

)
.(3.11)

Note that the distinction between H = ii or H =V is unnecessary when evaluating ∆H(τT ), as dif-
ferences in hte correlators, which arise from contributions of δ -functions in the spectral functions,
are eliminated in subtracted correlators.

1As the spectral functions as well as the integration kernel in the spectral representation of the correlators are odd
functions of the frequency, all odd moments vanish.
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Nτ Nσ # conf β a[fm] T/Tc cSW κ mMS/T[µ=2GeV] ZV ZPS

48 128 451 7.793 0.010 1.43 1.3104 0.13340 0.1117(2) 0.861 0.79
32 128 255 7.457 0.015 1.45 1.3389 0.13390 0.0989(4) 0.851 0.78
24 128 340 7.192 0.021 1.42 1.3673 0.13431 0.1062(2) 0.842 0.76

156 0.13440 0.02367(5)
16 128 191 6.872 0.031 1.46 1.4125 0.13495 0.02429(5) 0.829 0.74

64 191
48 229
32 251

Table 1: Simulation parameters for the generation of gauge field configurations on lattices of size N3
σ ×Nτ .

4. Simulation Parameters and Results

4.1 Computational Details

Our numerical results are obtained from quenched QCD gauge field configurations generated
with the standard SU(3) single plaquette Wilson gauge action [7]. Using an over-relaxed heat bath
algorithm configurations were generated on lattices of size N3

σ ×Nτ , where 32 < Nσ < 128 and
Nτ = 16, 24, 32 and 48, with a separation of 500 updates per configuration. Correlation functions
and plaquette expectation values calculated on these configurations have been checked and are seen
to be uncorrelated. Details on the statistics collected are given in Tab. 1.

All calculations presented here have been performed at a single temperature value, T ' 1.45Tc.
The gauge couplings have been adjusted accordingly for the different temporal lattice sizes. To do
so we extrapolate known results for the critical coupling βc(Nτ) and the square root of the string
tension

√
σ [8]. This is achieved by fitting T/

√
σ using the ansatz suggested in [9] within the

range of β ∈ [5.6,6.5] and extrapolating to our relevant region of β ∈ [6.8,7.8]. All simulation
parameters are given in Tab. 1.

In the fermion sector we employ the clover improved Wilson action with non-perturbatively
chosen clover coefficient cSW [10] and determine the correlation functions using an even-odd de-
composed CG-algorithm. The hopping parameter κ is chosen to be close to its critical value [11]
and tuned to give approximately constant quark masses for four of the examined lattices. Here the
quark masses are estimated using the axial Ward identity (AWI) to calculate the AWI current quark
mass mAWI for the different values of cut-off. Whereby we use the non-perturbatively improved ax-
ial vector current with coefficient cA noted in [12]. In the next step we calculate the renormalization
group invariant mass mRGI and rescale to the commonly quoted MS-scheme at the scale µ = 2GeV.
The results are also listed in Tab. 1.

4.2 Numerical Results

Due to the subtlety of the effects in question it is not very illuminating to examine the correlator
directly. To illustrate this we show the correlation functions of the vector and pseudo scalar currents
together with their analytically obtained free continuum and free discretized, lattice counterparts
in Fig. 1. Clearly the exponential decay of the correlation function dominates and obscures all

5
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Figure 1: The vector (left) and pseudo scalar (right) correlation functions together with their free continuum
(magenta lines) and free lattice (open symbols) counterparts. (Blow-ups): The ratio of free lattice and free
continuum correlation functions.

other interesting physics features. To circumvent this effect it is useful to look at certain ratios that
largely cancel the exponential part of the Euclidean time dependence of the correlators.

One of these ratios is that of the correlation function itself divided by the free correlation
function given in Eq. 3.3,

RH(τ ,T ) =
GH(τ,T )

G f ree
H (τ,T )

. (4.1)

The immediate advantage of a ratio as that given in Eq. 4.1 is that it gives a direct handle on the
deviation of the correlation function calculated at finite and infinite temperature, respectively. As
the continuum as well as lattice free correlation functions are known analytically, this also provides
insight into the importance of lattice cut-off effects as function of Euclidean time. The insertions
in Fig. 1 show the ratio of the free lattice and the free continuum correlation functions. They, of
course, show that cut-off effects are largest at small distances. Moreover, it becomes obvious that
with increasing cut-off values (larger Nτ ) the onset of cut-off effects is shifted to smaller distances.

As we employ the local current correlations introduced in Eq. 2.1 all results have to be renor-
malized multiplicatively,

Jlat
ν = (2κZH)q̄(τ,~x)γνq(τ,~x), (4.2)

where the renormalization constants have been determined non-perturbatively for the vector [11]
and perturbatively up to two-loop order for the pseudo scalar channel [13]. They are listed in Tab. 1.
In the case of the vector correlation functions the above statement holds true also for the time-like
component G00(τ,T ) because the local lattice current is not conserved at non-zero lattice spac-
ing. Consequently the time-like correlation function G00(τ,T ) may not be strictly τ-independent.
However, as all vector current-current correlation functions are subject to the same renormalization
constants a rescaling of the correlation functions GV (τ ,T ) and Gii(τ ,T ) or even the ratio RH(τ,T )
by G00(τ ,T ) yields a quantity independent of renormalization.
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Nτ 16 24 32 48 ∞
χq/T 2 0.882(10) 0.895(16) 0.890(14) 0.895(8) 0.897(3)

Table 2: Quark number susceptibility (χq/T 2) calculated on lattices of size 1283 ×Nτ . The quark number
susceptibilities have been renormalized using the renormalization constants listed in Tab. 1. The last column
gives the result of a continuum extrapolation taking into account cut-off errors of O(a2).
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Figure 2: The time-like component of the vector spectral function, G00(τT )/T 3, calculated at T ' 1.45Tc.
The left hand part of the figure shows the volume dependence of G00(τT )/T 3 for Nτ = 16 and 32 ≤ Nσ ≤
128. The right hand figure shows the cut-off dependence of G00(τT )/T 3 for Nσ = 128 and 16 ≤ Nτ ≤ 48.

4.3 Finite Volume and Lattice Effects

4.3.1 Quark Number Susceptibility

As mentioned above the time-like component of the vector correlation function, G00(τT ),
will be used for rescaling in the following, so it is the first channel to be tested for finite volume
and cut-off effects. We find these effects to be small, as can be seen from Fig. 2, where we plot
−G00(τT )/T 3. The quark number susceptibility may then be extracted from the long distance
behavior of the correlator, χq/T 2 =−G00(τT ' 0.5)/T 3.

On the left of Fig. 2 we show the results for the Nτ = 16 lattice with fixed cut-off while varying
the spatial extent. Except for aspect ratio Nσ/Nτ = 2 all results agree within statistical errors at the
level of 1%. On the right the cut-off dependence at fixed spatial extent Nσ = 128 is shown. Here
too systematic effects in the quark number susceptibility are seen to be small.

Note even though we implement the non-conserved local current of the time-like vector cor-
relation function, we obtain results that are τ-independent to a very high degree. The deviations
at small distances τT might be understood as lattice effects. The results for the quark number
susceptibility are summarized in Tab. 2.

4.3.2 Vector and Pseudo Scalar Correlation Functions

Turning to the vector and pseudo scalar correlation functions we stress that the large range of
available spatial lattice sizes at fixed cut-off, with aspect ratios ranging between 2 ≤ Nσ/Nτ ≤ 8,
allows to quantify finite volume effects. Moreover, the large temporal extent of maximum Nτ = 48

7
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Figure 3: The vector (left) and pseudo scalar (right) correlation functions, calculated on lattices of size
N3

σ ×Nτ at T ' 1.45Tc, where “1283 ×24−2“ denotes the lower quark mass on this lattice. The results are
normalized using the corresponding free correlation functions. Shown are data for τT > 1/Nτ only.

on an isotropic (!) lattice reduces the lattice spacing to 0.01fm at T ' 1.45Tc. The variation of
Nτ by up to a factor of three allows to control lattice cut-off effects. In the following it will be
shown that finite volume effects in the correlation functions are well under control and a controlled
extrapolation to the continuum limit is indeed possible in a large Euclidean time interval. Note that
that our current analysis improves on systematic errors that were present in earlier calculations of
the vector spectral function performed by employing the same discretization scheme [14].

In Fig. 3 we show results for the vector and pseudo scalar correlation functions using the
ratios introduced in Eq. 4.1. On the left hand side the ratio for H = V and on the right hand side
for H = PS is shown for all available lattice sizes. Data sets with fixed spatial size at Nσ = 128
while varying the cut-off Nτ shown in black. Data sets with fixed cut-off (Nτ = 16) and varying
volume are shown in color. For one value of the cut-off (Nτ = 24) we performed calculations for
two different values of the quark masses. We find that finite quark mass effects are small and well
within 2%. From the fixed cut-off (colored) Nτ = 16 results in both plots finite volume effects for
τT ≥ 0.3 are seen to remain within a few percent even for the largest Euclidean time separation at
τT = 0.5. As a consequence these results show that finite volume effects are under control. For
τT < 0.3 in the left H =V plot it is immediately apparent that cut-off effects are large in the ratio.

In the pseudo scalar case the situation concerning cut-off effects is not immediately evident.
The ratio shown in Fig. 3(right) shows large deviations from the free field behavior even at short
distances. At all distances the correlator thus seems to be controlled by large non-perturbative ef-
fects. Moreover, the analysis of cut-off effects is obscured by the fact that data have been rescaled
by using renormalization constants, which are known only perturbatively. This introduces unknown
uncertainties. To eliminate at least these uncertainties we show in Fig. 4 the pseudo scalar correla-
tion function normalized by the pseudo scalar correlation function at τT = 0.5. As we focus on the
cut-off dependence we only show equal quark mass Nσ = 128 results. The left hand figure shows
the pseudo scalar correlator normalized by free continuum correlator and in the right hand figure
the free lattice correlation function has been used. From the left hand plot the cut-off dependence
becomes immediately evident and we conclude that, similarly to the vector case, cut-off effects
above τT = 0.3 are small and increase with decreasing τT . Even though their effect becomes ap-
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Figure 4: The pseudo scalar correlation function normalized by the free continuum (left) and free lattice
(right) correlation functions, both additionally rescaled by the correlator at τT = 1/2, GPS(τT = 0.5).

parent for τT ≤ 0.3, they do not dominate the behavior of the correlation function as in the vector
channel. Actually the right hand side of Fig. 4 indicates that the τ-dependence of the cut-off effects
is similar to that of the free lattice correlation functions, as any cut-off effect is hardly visible also
for τT ≤ 0.3.

4.4 Continuum Extrapolation

The results shown in the previous section indicate that the continuum limit can be taken for the
vector correlation functions at least for τT>∼0.25. To do so we use a quadratic ansatz in aT = 1/Nτ

to fit ratios of the vector correlator and the corresponding free field values. We normalize these
ratios using the quark number susceptibility χq/T 2 and perform fits at fixed temporal extent τT .
As cut-off effects are large on the Nτ = 16 lattice we will only use data from the Nτ = 24, 32, 48
lattices, for reference we will however include the former in our figures.

In Fig. 5 we show results of this extrapolation in 1/N2
τ for τT = 1/2, 7/16, 3/8, 5/16 and 1/4

where we used the free continuum as well as the free lattice correlation functions for normalization.
Note that we performed extrapolations for all Euclidean times τT available on the Nτ = 48 lattice.
Wherever the smaller lattices fail to have a corresponding point in τT we interpolate using a spline
construction. Subsequently the errors are then calculated using a Jackknife-method. In Fig. 5 this is
the case for τT = 7/16 and 5/16. The figure reveals that the continuum limit can be cleanly taken
and consistent results are obtained by using the free continuum and the free lattice normalizations,
respectively.

In the left hand part of Fig. 6 we show the results of the extrapolation in the vector channel
as described above. Note that the largest deviation from the free correlation function occurs at
τT = 1/2. In fact, the established bending of the vector correlation function is crucial for a quanti-
tative description of the low frequency region of the vector spectral function in terms of the ansatz
suggested in Eq. 2.11. The short distance part of the correlation function obviously can be well
described by the free spectral function including the correction factor (1+κ) as also has been done
in Eq. 2.11.

In the right hand part of Fig. 6 the corresponding result for the pseudo scalar correlation func-
tion is shown. Here it is not possible to suppress the renormalization effects using suitable ratios

9
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Figure 5: The ratio RV (τT ) normalized by the quark number susceptibility using the free continuum
(full symbols) and lattice (open symbols) correlation functions over 1/N2

τ . Shown are the results of
τT = 1/2,7/16,3/8,5/16 and 1/4, for legibility the results have been offset by 0.1 respectively. For
τT = 7/16 and 5/16 spline interpolations were used to estimate the corresponding results on the Nτ = 24
lattice.
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Figure 6: (left): The ratio RV (τT ) normalized by the quark number susceptibility using the free continuum
correlation functions over τT and its corresponding continuum extrapolation. (right): The unnormalized
RPS(τT ) including its continuum extrapolation. In both cases the extrapolation was done as described,
filling in spline interpolations when necessary. The solid curve in the left hand figure shows the fit discussed
in section 5.

of correlation functions. The extrapolation necessarily also includes this ambiguity. As the corre-
lator normalized by its value at the midpoint was found to be almost cut-off independent and as
finite volume effects were seen to be small renormalization effects dominate the uncertainty of the
extrapolation.

4.5 Curvature of the Vector and Pseudo Scalar Correlation Functions

As discussed in section 3, thermal moments give additional insight into the spectral repre-
sentation of hadronic correlation functions. They are especially interesting as they are obtained at
the largest Euclidean time separation where the correlation functions are most sensitive to the low
frequency region of the spectral function. In particular, the lower orders of the thermal moments
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restrict the magnitude of the low frequency contribution to the spectral function and thus to the
correlation function.

In order to extract thermal moments we examine the quantity ∆H(τT ) defined in Eq. 3.11.
Once more we rescale this ratio of subtracted correlators by the quark number susceptibility. In
Fig. 7 we show results obtained from the vector and pseudo scalar correlators, respectively. We
perform an extrapolation of ∆H(τT ) to the continuum, exactly as outlined for the correlation func-
tions themselves. The extrapolated data is then fitted to a quartic polynomial as indicated in the
Taylor-expansion in Eq. 3.1 to obtain ∆H(τT ) at τT = 1/2. In the vector channel this gives

T 2G(2)
H

χqG(2), f ree
H

= 1.1916±0.0011 , (4.3)

where H may denote either ii or V as noted in section 3. Combining these results with those of the
continuum extrapolation for the vector correlation functions we obtain the ratios R(2,0)

V and R(2,0)
ii ,

R(2,0)
V = 27.187±0.286 < R(2,0)

V, f ree and R(2,0)
ii = 19.217±0.193 > R(2,0)

ii, f ree . (4.4)

Repeating this analysis also in the pseudo scalar channel we obtain ∆PS(τT )/G(0)
PS shown in the

right hand part of Fig. 7 and the following results for the second moment,

T 3G(2)
PS

G(0)
PS G(2), f ree

PS

= 0.7912±0.0012 , thus R(2,0)
PS = 10.932±0.017 < R(2,0)

PS, f ree . (4.5)

These results reveal some interesting properties of the individual thermal moments; a combination
of Eqs. 4.3 and 4.4 indicates that the second thermal moment is closer to the free field value for the
H =V case and farther away for the H = ii, respectively. To evaluate Eq. 4.5 in this way we need
G(0)

PS /G(0), f ree
PS , which from Fig. 6 can be seen to be larger than 1. Subsequently, even though we

are not able to extract the latter quantity without fully controlling renormalization effects, we can
conclude the second moment must be closer to the free field limit than the zeroth.

In both channels we also tried to examine the fourth thermal moment, but our numerical results
unfortunately do not permit a conclusive determination of this value.

5. Electrical Conductivity

The results obtained for the vector correlation function and its continuum extrapolation, as well
as the result on the second thermal moment put stringent bounds on the magnitude and shape of
any contribution to the low frequency behavior of the vector spectral function. The small deviations
from the free vector correlation function also suggest that the spectral function of the free theory
is a good starting point for an analysis of the vector spectral function at finite temperature. We
thus used as an ansatz for the spectral function the form given in Eq. 2.11. This ansatz depends on
four temperature dependent parameters: the quark number susceptibility χq(T ), which we already
extracted from the time-like component of the vector correlation function, the strength (cBW (T ))
and width (Γ(T )) of the Breit-Wigner contribution and the higher order corrections to the high
frequency free field spectral function, which we parametrize at present by a constant κ(T ). Already
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Figure 7: (left): The mid-point subtracted vector correlation function normalized to the corresponding
difference for the free vector correlation function. Shown is ∆V (τT ) but normalized by the quark number
susceptibility. (right): The pseudo scalar case ∆PS(τT ) normalized by G(0)

PS . The Fits in both Figures obey a
quartic ansatz as indicated by the definition of ∆H(τT ) and are shown within the interval τT ∈ [0.2 : 0.5].

with this ansatz we obtain good fits for both the spatial (Gii) and vector (GV ) correlation functions.
In fact, a combined fit to the continuum extrapolated vector correlation function in the Euclidean
time interval [0.25 : 0.5] and the second thermal moment, gives excellent results with a χ2/do f
below unity. For details on the fitting procedure and a more elaborate discussion of the results we
refer to [1]. The parameters obtained using this ansatz are:

2cBW T/Γ = 1.235±0.056 , Γ/T = 2.23±0.15 , (1+κ) = 1.046±0.004 .

This fit is shown in Fig. 6(left). Of course, as a consequence of this fit ansatz we also obtain a
result for the behavior of the spectral function close to ω = 0, i.e. we can deduce the electrical
conductivity of the quark gluon plasma at T ' 1.45Tc:

σ
T

=
Cem

6
lim
ω→0

ρii(ω)

ωT
=

2Cem

3
·

cBW χq

Γ
= (0.37±0.02) ·Cem . (5.1)

We stress, however, that this result is a consequence of the particular ansatz used to fit the
vector correlation function. An important question is, of course, to what extent this ansatz is unique
or allows for modifications, in particular at low energies, which will influence the determination
of the electrical conductivity. We intend to address this question by performing fits within a larger
class of spectral functions as well as the Maximum Entropy Method [1].

6. Summary

We have presented a detailed analysis of light meson correlation functions at T ' 1.45Tc in
quenched QCD. For the vector current channels we find that finite volume and cut-off effects are
under good control in a large Euclidean time interval. Here it is possible to take the continuum
limit. The calculation of the second thermal moment and its inclusion in fits greatly helped to
constrain the fit parameters. This led to an estimate of the electrical conductivity of the QGP at
T ' 1.45Tc, the significance of which requires further investigations in a larger parameter space.

12



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
9
1

Continuum extrapolation of finite temperature quenched lQCD A. Francis, F. Karsch

In the pseudo scalar channel deviations from free field behavior are much more pronounced.
In particular the analysis of cut-off effects is more difficult, as the perturbatively computed renor-
malization constants introduce additional systematic uncertainties. However, rescaling the results
by the pseudo scalar correlation function at the midpoint yields a largely cut-off independent re-
sult. Also finite size effects are found to be small in the pseudo scalar channel. This suggests that
a spectral analysis of the pseudo scalar correlation functions should yield reliable results for its
frequency dependence and may suffer only somewhat from an imprecise knowledge of the overall
normalization. We will address the spectral analysis of the pseudo scalar correlator elsewhere.
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