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The quark-gluon plasma produced in heavy ion collisions at RHIC energy is known to be very

close to the ideal fluid. Calculations with viscosities and other transport coefficients, i.e. second

order dissipative hydrodynamics, are on the way. While second order dissipative hydrodynamics

is known as a causal theory, it includes many phenomenological transport coefficients. We at-

tempt to constrain those transport coefficients by SU(3) lattice gauge calculation. On the basis of

the phenomenological derivation of second order hydrodynamics by Israel-Stewart and Einstein

principle, we relate the Israel-Stewart parameters to fluctuations of off-diagonal components of

energy-momentum tensor on the lattice and evaluate them.
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1. Introduction

One of the striking features of quark-gluon plasma (QGP) produced at RHIC (the Relativistic

Heavy Ion Collider) is the fact that the space-time evolution of the matter produced in heavy ion

collisions is well described by hydrodynamic models [1]. Heavy ion collisions which will be started

at the LHC (the Large Hadron Collider) can reach higher temperature (T ) than RHIC. The value of

shear viscosity, η , is then expected to increase, since the strong coupling constant becomes smaller

because of the aymptotic freedom of Quantum Chromodynamics (QCD). Indeed, leading-order

perturbative calculation predicts the dependences of η on T and coupling g as

η = κ
T 3

g4ln g−1
, (1.1)

with a positive coefficient κ [2]. It is therefore essential to take into account the effects of disspa-

tions in hydrodynamic models for heavy ion collisions at LHC energy.

The simplest relativistic dissipative hydrodynamics is the first order theory, which is proposed

by Eckart and Landau-Lifshitz [3, 4]. The first order theory, however, accompanies acausal problem

and instability in numerical simulations [5]. A strategy to evade these problems is to extend the the-

ory to second order. One of the hydrodynamic equations given along this line is the Israel-Stewart

(IS) theory [6]. In the second order theories, however, there appear many phenomenological pa-

rameters that are not included in the first order one. These new parameters cannot be determined

within hydrodynamics but should be determined by microscopic theory, i.e. QCD in our case.

To constrain the parameters in the hydrodynamic models, microscopic analyses of the transport

coefficients are highly desirable.

Since the temperature region realized at RHIC or LHC is not within the reach of perturbation

theory, one needs nonperturbative approaches to determine the transport coefficients. At present,

lattice gauge theory is only the systematic approach that can calculate physical quantities in such a

nonperturbative region. In the present study, we attempt to constrain the phenomenological param-

eters in the second order hydrodynamics on the lattice using a method proposed in Refs. [7, 8, 9].

In this method, ratios between the viscosities and the relaxation times in the second order theory

are related to static fluctuations of energy-momentum tensor in equilibrium. An advantage of this

method is that hydrodynamic parameters are constrained only through the measurements of static

observables on the lattice. On the other hand, measurements of viscosity using Kubo formulas re-

quire the analytic continuation to extract the real-time spectral function from Euclidean correlator.

The main purpose of the present work is to evaluate these ratios with SU(3) gauge theory on the

lattice and reduce the number of phenomonological parameters in IS theory.

2. Second order transport coefficients

In the following, we first briefly review IS theory, which is a second order dissipative hy-

drodynamics [6, 10]. Basic equations of hydrodynamics are the local conservation laws of the

energy-momentum and the net charge,

∂µT µν = 0, (2.1)

∂µNµ = 0, (2.2)

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
9
4

Lattice study of second order transport coefficients Yasuhiro Kohno

where T µν = T
µν

eq + δT µν and Nµ = N
µ
eq + δNµ are the energy-momentum tensor and the charge

current in nonequilibrium, respectively. Here, T
µν

eq and N
µ
eq denote the equilibirum values, and

δT µν and δNµ represent the effects of dissipations.

In Eqs. (2.1) and (2.2), there exist fourteen unknown variables for five constituent equations.

These equations therefore are not closed. The simplest prescription to introduce additional nine

constraints is the ideal fluid approximation, where the number of unknown variables is reduced by

neglecting all dissipative effects. Another method is to constrain the system by the second law of

thermodynamics,

∂µsµ ≥ 0. (2.3)

This constraint, together with the lineality of dissipative terms against the thermodynamic forces,

provides nine constituent equations, which make the hydrodynamic equations closed. Here, the

entropy current sµ is given by

sµ = sequµ +
qµ

T
+ Qµ , (2.4)

where seq, uµ and qµ are the entropy density in equilibrium, arbitrary 4-velocity of the fluid normal-

ized as uµuµ = 1, and the heat flow, respectively. Qµ represents higher order in dissipative terms,

δT µν and δNµ . If we neglect Qµ , the second law of thermodynamics and linearity lead to the first

order hydrodynamic equations including three transport coefficients, shear and bulk viscosities η

and ζ , and heat conductivity λ . The first order equations, however, are known to violate causality.

In the second order theory, one incorporates Qµ and repeats the similar argument. Up to second

order in δT µν and δNµ , the most general form of Qµ is given by

Qµ = −
uµ

2T

(

β0Π2 −β1qν qν + β2πρλ πρλ
)

−
α0Πqµ

T
+

α1πµνqν

T
+ Rµ , (2.5)

where Π and πµν are dissipative currents corresponding to bulk and shear flows, respectively, in-

cluded in δT µν and δNµ . Rµ represents terms needed for the theory with the conserved currents

Nµ . Here, we note that dissipative currents are regarded as state variables describing the macro-

scopic system in dissipative hydrodynamics; accordingly entropy current should be extended as a

function of these variables, sµ = sµ(Π,qµ ,πµν). The proportional coefficients βi and αi are not de-

termined in this treatment and constitute new phenomenological parameters in IS theory. Eq. (2.5)

and the second law of thermodynamics lead to a set of closed equations, i.e. IS equations [6].

A remark is in order. In the above argument we constructed the second order hydrodynamics

starting from the entropy current Eq. (2.4) and second law of thermodynamics. The higher-order

hydrodynamics equations are also derived by the derivative expansions of uµ [11]. In the second

order theory in the derivative expansion, one can obtain the form of Eq. (2.4) as an extension of the

entropy current to nonequilibrium states, which is a monotonically increasing function with small

dissipations [11].

One of the IS equations reads

τπDπµν = −πµν + 2ησµν −πµνηT ∂ρ

(

τπuρ

2ηT

)

+ 2ηα1∇〈µqν〉, (2.6)
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where D ≡ uµ∂ µ being the derivative along uµ , σµν ≡ 1
2
∆α

µ ∆
β
ν

(

∂α uβ + ∂β uα

)

− 1
3
∆µν∂ρuρ is the

shear tensor, and ∆µν ≡ gµν −uµuν is the spatial projection tensor orthogonal to uµ , respectively.

The angular bracket notation is defined by A〈µν〉 ≡
[

1
2
(∆

µ
ρ ∆ν

σ + ∆
µ
σ ∆ν

ρ −
1
3
∆µν∆ρσ )

]

Aρσ . The left

hand side of Eq. (2.6) gives rise to relaxation effect to the solution of the first order equations, and

the time scale of this relaxation, τπ , is called the relaxation time for shear channel. The violation

of causality in the first order theory is cured with this term with sufficiently large τπ . Although not

shown, the IS equation for the bulk channel also has a similar term describing the relaxation with

relaxation time τΠ. Relaxation times τπ and τΠ are related to βi in Eq. (2.5) as

τΠ = β0ζ , τπ = 2β2η . (2.7)

Eq. (2.7) implies that the ratios between viscosities and the relaxation times are related to propor-

tional coefficients in the entropy current, β0 and β2, as

β0 =
τΠ

ζ
, β2 =

τπ

2η
. (2.8)

3. Fluctuations of energy-momentum tensor

Equations (2.8) show that the measurement of β0 and β2 enables us to determine the relaxation

time to viscosity ratios. In the following we relate βi to fluctuations of energy-momentum tensor

using the Einstein principle in order to measure them on the lattice.

Let us first recapitulate the Einstein principle. When the system posseses a set of state variables

~x = (x1,x2,x3, ...), the entropy in equilibrium is given by the function of these variables, S(~x). The

entropy then is related to the number of microscopic states corresponding to~x, W (~x), by Boltzmann

principle,

S(~x) = logW (~x). (3.1)

Einstein rewrote this principle as follows [12],

W (~x) = exp[S(~x)]. (3.2)

Then, a microscopic state for a set of state variables ~x occurs with the probability

P(~x) =
W (~x)

∑W (~x)
. (3.3)

Following IS theory, the entropy in unit volume s in the rest frame is given by

s(Π,qµ ,πµν) = uµsµ = seq −
1

2T

(

β0Π2 −β1qµqµ + β2πµνπµν
)

, (3.4)

where orthogonality relations uµqµ = uµπµν = 0 have been used. Substituting Eq. (3.4) into

Eq. (3.2), the probability that Π, qµ , and πµν are macroscopically realized in a volume V is given

by

P(Π,qµ ,πµν) ∝ exp[−
V

2T

(

β0Π2 −β1qµqµ + β2πµνπµν
)

], (3.5)
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where Π,qµ , and πµν are spatial average of corresponding dissipative terms in a volume V , defined,

for example, as

πµν =
1

V

∫

V
d3x πµν(x). (3.6)

The probability distribution of πµν is then, for example, given by

P(πµν) ∝ exp

[

−
V

2T
β2π2

µν

]

, (3.7)

which leads to the variance for πµν

〈(V πµν)2〉 =
V T

β2

, (3.8)

where we have used 〈πµν〉 = 0. Since in the rest frame one has πi j = Ti j = 1
V

∫

V d3xTi j(x) for

1 ≤ i < j ≤ 3, with Eq. (3.8) one obtains the formula for β2 in the rest frame as

β2 =
T

V 〈T 2
i j〉

. (3.9)

Finally, we remark that Eq. (3.9) is also obtained via the relaxation-time approximation for the

correlation function of the energy-momentum tensor [8]

〈πi j(t)πi j(0)〉 = 〈πi j(0)πi j(0)〉e−t/τπ . (3.10)

The fluctuation of the energy-momentum tensor 〈T 2
µν〉 is rewritten as

〈T 2
µν〉 =

1

V

∫

d3x〈Tµν(x)Tµν(0)〉. (3.11)

One can easily show that the integral in Eq. (3.11) for 1 ≤ i < j ≤ 3 has an ultraviolet divergence

in the continuum theory. In the measurement of Eq. (3.11) on the lattice, therefore, one has to take

an appropriate regularization to remove the divergence. In this study, we simply regard that this

regularization can be acheived by subtracting the vacuum part of the fluctuations,

〈T 2
µν〉reg = 〈T 2

µν〉T 6=0 −〈T 2
µν〉T=0. (3.12)

4. Numerical results

We performed lattice simulations for SU(3) pure gauge theory with a standard Wilson gauge

action. Gauge configurations are updated by heatbath and overrelaxation algorithms. In Table 1 we

list lattice parameters used in this work. The simulations are performed on four isotropic lattices

to investigate the lattice spacing and volume dependence. The numbers of temporal lattice sites

Nτ correspond to T ∼ 0.5Tc − 2.5Tc. The energy-momentum tensor in Euclidean space used in

this work is given by Tµν = 2Tr
[

FµρFνρ −
1
4
δµνFρσ Fρσ

]

where the energy-momentum tensor is

constructed to be traceless, Tµµ = 0. For the definition of the field strength on the lattice, we have

chosen the clover operator. For each parameter, hundreds of thousands of configurarions have been

5
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β = 6/g2 N3
σ Nτ a[fm] L[fm]

case 1 6.499 323 6,8,12,32 0.049 1.6

case 2 6.205 323 4,6,8,32 0.074 2.4

case 3 6.000 323 4,6,8,16 0.094 3.0

case 4 6.000 163 4,6,8,16 0.094 1.5

Table 1: Simulation parameters. Nσ and Nτ are the numbers of lattice sites in spatial and temporal directions,

respectively. a and L denote the lattice spacing and spatial lattice size, respectively.

-6

-4

-2

 0

 2

 4

 6

 0.5  1  1.5  2  2.5  3

V
<

T
12

2 >
/T

5

T/Tc

β=6.499, L=1.6fm
β=6.205, L=2.4fm
β=6.000, L=3.0fm
β=6.000, L=1.5fm

Figure 1: Fluctuations of an off-diagonal component of energy-momentum tensor per umit volume at finite

temperature. The vaccum contribution is subtracted at each temperature. The fluctuations over Tc have

negative value and below Tc are consistent with zero.

prepared. Statistical errors are estimated by the jackknife method with a bin size in the range

50−1000.

As argued in Eq. (3.11), the fluctuation of energy-momentum tensor is an ultraviolet divergent

quantity, and one must renormalize this vacuum contribution in the measurement. We regarded the

fluctuations measured with largest Nτ for each set of configuration to be the value for the vacuum,

and subtracted it following Eq. (3.12).

In Fig. 1, we show the T dependence of fluctuations of the off-diagonal component of energy-

momentum tensor 〈T 2
12〉reg. The figure shows that the results with all sets of configurations coincide

within the statistical error, which indicates that the lattice spacing dependence of this quantity is

well suppressed. Moreover, by comparing the result with different L for β = 6.0 one finds that

the spatial volume dependence is also small except for T ≃ Tc. The numerical result, however,

shows that 〈T 2
12〉reg takes a negative value for all temperatures analyzed. Because 〈T 2

12〉reg is related

to β2 = η/(2τπ) through Eq. (3.8), the result shows that one of the transport coefficients becomes

6
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negative, which, however, contradicts the stability of the hydrodynamic equations.

5. Discussion

In this work, we attempted to evaluate the second order transport coefficient β2, i.e. a ratio

between the relaxation time τπ and the shear viscosity η in SU(3) gauge theory by lattice simu-

lations. Using Einstein principle (3.2) and the form of entropy in IS theory (3.4), the ratio can be

related to statistical fluctuation of off-diagonal component of energy-momentum tensor in equi-

librium through Eq. (3.8). Since the fluctuation of energy-momentum tensor has an ultraviolet

divergence, we regularized the divergence by subtracting the vacuum fluctuation. We, however,

found that with this regularization β2 becomes negative. We also found that the wrong sign is not

attributed to the lattice spacing or the spatial volume dependences, because the numerical result

shows that effects of these quantities on observables measured in this study are small.

Negative value for β2 may be due to the contribution from temperature-dependent divergence

which cannot be renormalized by a naïve subtraction of vacuum contribution. This temperature-

dependent contribution may arise from divergence at identical space-time point. Similar problem is

known to occur for the vacuum expectation value of composite field composed of some local field

operators. This analysis is in progress.
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