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1. Introduction

In the framework of non-abelian gauge theories at finite taoire, several effective descrip-
tions have been pursued in order to overcome the infrareolgmts [1] connected with perturba-
tive approaches to the fundamental theory. A rather suttddsshnique is dimensional reduction
[B, B]. Thanks to the presence of different energy scalegyded by the finite temperature dy-
namics of the origina(3+ 1)-dimensional theory, an integration over the hard modedsl¢a a
3d effective description which can then be solved in a natdpeative way (e. g. by Monte Carlo
integration).

In the case of QCD, this technique loses its validity in thefic®d phase; however, one would
want to devise effective methods to study the vicinity of tieeonfinement transition: this is not
a completely trivial task since the standard perturbatimeedsional reduction does not retain the
Z(N) symmetry of the original Yang-Mills theory][4]. One can thiatiow a different strategy,
namely writing down a general theory respecting the desiyametry and then fixing the (many)
couplings by matching with particular observablBs[[5, 6]hil for SU(2) the phase transition
is captured correctly by such approachds[]7, 8], for the iphifg relevantSU(3) gauge theory a
satisfactory fixing of all couplings is still an open issue.

A different way to pin down a 3d effective theory is to emplagtice strong coupling expan-
sions. This idea, first considered i [9], has been pursuecibyus authord [10, LI, 1P,]13] {4] 15]
and leads to theories with Polyakov loops as fundamentaiedegof freedom. The contribution
from spatial plaquettes was often neglected, a simpliboatvhich preserves the universal be-
haviour of the theory; in[[16], instead, they were explicithken into account. Recent develop-
ments including staggered fermions can be foundlih [17].

The models proposed here systematically extend this apiprioy providing series for the
effective couplings up to a certain order and are thus vadigohd the spatial strong coupling
limit. As is to be expected from strong-coupling expansjang results will have a finite radius
of convergence, which is supposed to coincide with the deoement transition: in this sense,
our effective formulation is complementary to weak couplapproaches. The effective actions we
propose are subsequently studied by means of Monte Caégratton, and the results are shown
to lead to the correct order of the transition as well as talgsiimates of the deconfinement point.

2. Derivation of the effective theory

2.1 General strategy andSU(2)

Consider the partition function of €+ 1)-dimensional lattice gauge field theory at finite
temperature(T = ﬁ) with gauge grouBU(N) and Wilson’s gauge action

B 2N

z :/[dUo] [dUi]exp[m % (trup+trug)] , B= 7 (2.1)

Finite temperature and the bosonic nature of the degreeeefidm imply the use of periodic
boundary conditions in the time direction.
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In order to arrive at an effective three-dimensional theasy integrate out the spatial degrees
of freedom and get schematicalfy [13]

Z= /[dUo] expl—S] ;

S = In/[dui]exp [%%(trurﬁ—tr Ug)] =MSH+ A0S+ (2.2)

We expand aroun@ = 0 and arrange the effective couplings = An(3,N;) in increasing order
in B of their leading terms. Thus, th, become less important the higherAs we shall see, the
interaction terms, depend only on Polyakov loops

s
Li=trW; =tr []Uo(X},7). (2.3)
=1

With sufficiently accurate knowledge of the relatiohg3,N;), we are able to convert the cou-
plings of the three-dimensional theory to those of the fudldry. Determining the critical parame-
tersAn ¢ of the effective theory then gives a whole array of critiBglN; ) for - in principle - allN.

In the following we calculate strong coupling, i.e. sm@/lexpansions of the leading,.

Since the calculations are quite similar for different nemsbof colours, we now specialise
our derivation to the simpler case 88(2) and later provide the necessary changesstd(3). For
more details sed [18]. Using the character expansion asilbegce.g. in [IP[ 0], the effective
action according to Eq[ (2.2) can be written as

~Sr=In [ [dU][] L+§d@AMXA%J7 (2.4)
p r0

where the sum extends over all irreducible representatiamish dimensiond, and charactey; .
The expansion coefficient () are accurately knowrf J[L9] and in the following we uses as

as expansion parameter insteadfofor its better apparent convergence. The logarithm in this
definition allows us to use the method of moments and cumsi[@di, and we get the following
cluster expansion

~Si= ) a(C)|'|¢(X|;{Wj}>n'; (2.5)
c=04") !
©(Xi{W}) = [1dU] [] daesr Ua)

where the combinatorial fact@(C) equals 1 for a single polyme$ and—1 for two non-identical
connected polymers. For clusters consisting of more thanpelymers,a(C) depends on how
these polymers are connected. Our task is then to grouphigatl graphs yielding the same
interaction terms up to some orderfnand this finally gives the strong coupling expansion of the
corresponding effective coupliniy,.
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Figure 1: First graph with a nontrivial contribution after spatialégration for a lattice with temporal extent
N; = 4. Four plaquettes in the fundamental representation ead interaction term involving two adjacent
fundamental Polyakov loogds andL;.

2.2 Leading order effective action

The leading order result of the effective action has firshtisdculated in[[J0] and corresponds
to a sequence dfl; plaquettes that wind around the lattice in temporal dicegticf. Fig.[1.. Its
contribution is given by:

S =ut > LiLj- (2.6)

Hence, to leading order the first coupling of the effectiveotty isA1(u,N;) = uMr.

For additional terms of the series fdt, we can use most of the graphs that also appear in the
strong coupling expansion of the Polyakov loop suscejiiiif3]. These corrections involve addi-
tional plaquettes, are hence of higher orden end we call these attached plaquettes decorations.
Carrying out the calculations, we get the following restitsough orderu'® in the corrections
relative to the leading order graph:

[ 134 49044
A1(u,2) = u?exp 2<4u4—8u6 = u — u1°> ,

: 128 36044
A1(u,3) = udexp 3<4u — AP+ B — u10>

3 Y
[ 140 37664
— T 10
A1(u,4) = u*exp _4 <4u — 40 = 3 T > ,

2.7)

140 36044u1c-,
3 405 '

A1(U,N; >5) = uMr exp[NT <4u — 4P =

For smalleN; some graphs do not contribute since the temporal exteneofdecoration is> N;
so that they do not fit into the lattice.

2.3 Higher order terms

There occur several types of higher order graphs: largebetsof loops involved, Polyakov
loops at distances larger than one and Polyakov loops irehidimensional representations. We
begin by considering powers of the leading order term. lotipe of higher order terms shows that
one can arrange a subclass of these terms in the followingi@nan

A2 A3
<)\1LiLj—?1Li2LJZ+§1Li3L?—...> = Y In(1+AdLiLy) . (2.8)
<IJ> <IJ>
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To see this, one calculates the corresponding graphs fith or L?L?, and the combinatorial
factora(C) of Eq. (2.) gives the correct prefactors for the series poagent a logarithm.

Next, let us consider couplings pertaining to next-to-aeneighbour interactions. These
appear once additional plaquettes are taken into accouwitely, the leading contribution should
correspond to a planar graph with Polyakov loops at distimoeHowever, this graph is precisely
cancelled by the contribution of the nearest-neighbouplysquared and its associated combina-
torial factor—1. The leading non-zero contribution therefore comes freshaped graphs and is
given by

A2(UNe)Sp = Ne (Ne = U2 5Ly (2.9)
(k1]

where we have two additional spatial plaquettes and we s@mnaihpairs of loops with a diagonal
distance ofy/2a, abbreviated bykl]. With the same steps leading to E[.}2.8), we finally arrive at
the SU(2) partition function

Z:/[dW] [T L+ ALl [ 2+ Aelia] (2.10)
<ij> ki

Finally, we include some remarks about the Polyakov loogggher dimensional representations.
Consider, e.g., the adjoint Polyakov loop: the leading otelen emerging from a strong coupling
expansion is

2 2 16
AaS =V Z Xa(W) Xa(Wj) , V:§U2+§U4+§5U6+---

and hence\, ~ u®r, which is formally of lower order than the couplifg. To next-to-leading
order (valid for allN; > 2) we have

Aa=\V¥ 1+N§”—6+ (2.11)
a— T3V . .

Effects of higher representations have also been invéstiga the literature[[14, 1%, P5].

2.4 The effective action forSU(3)

In the case oBU(3) the same steps as f6tJ(2) apply. The only difference we have to keep
in mind is thatSU(3) also has an anti-fundamental representation and consgtiggre is also
a complex conjugate Polyakov loop varialble Thus we get the one-coupling and two-coupling
partition functions

7, = /[dW] M [+ (L + L)) (2.12)
<ij>

Z, = /[dW] M [1+/\1(LiL]f+LrL,-)]H[1+A2(LkLr+L;L.)]. 2.13)
<ij> kl
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The effective coupling\1(u,N;) is obtained as (for this gauge group we consider only evaregal
of N;):
A1(2,u) = u?exp[2 (4u*+ 12u° — 18u° — 36u’
N gug N 1791ug N 830517u10> }
2 10 5120 ’
A1(4,u) = u*exp[4 (4u® + 12u° — 14u° — 36U’
N Zi5u3 n 1851ug n 1035317u10>} 7
2 10 5120
A1(N; > 6,u) = u™ exp[N; (4u* + 120° — 14u° — 36u”

+¥ ud+ 1iglu9 + 12351527097&0” (2.14)
For the first terms of the next-to-nearest neighbour cogpli{N;,u) we find
A2(2,u) = u? [Zu2 +6u4+31u6] ,
Ao(4,u) = W8 [12112+26u4+364u6} ,
Aa(6,U) = ut? [30uZ+66u4} :
A2(Np > 8,u) = u?™ [N (N; — Du?] | (2.15)
while the leading coupling of adjoint loops is (valid fdf > 2)
Aa=Wr <1+NT;”—5+...>, V:§U2—§U3+§—;U4+... (2.16)

3. Numerical simulation of the effective theories

3.1 The one coupling model

For the purpose of numerical simulations, a further singaifon is achieved by using the
trace of the Polyakov loops for the path integral measuregeegs of freedom (complex numbers,
|Lx| < 3, instead of matrices), and rewrite the one-coupling tantfunction forSU(3), Eq. (2.1p),

7— (|-| / dLX>e—Seff  Sr=— Y log(1+2A1ReLiL}) — 3 V. (3.1)
X 7> X

The potential ternVy is the Jacobian induced by the Haar measure of the origimaipgin-
tegration; rotating the matrices to the diagonal form (ge?, e 1(6+9)) with ||, |@| < 11, we

have [26]:

1
Vy = é|og(:27—18|LX|2+8ReL’;*— L% . (3.2)
The integration measure actually used in our simulation takes the form
+1T +1T
/dl_xex:/ do [ deek. (3.3)
—Tr -

When working on th&sU(2) theory,—2 < Ly < +2 is a real number and we simply have

+2 v 1 2
dLye™ | V= > log(4—Ly) . (3.4)
2
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Figure 2: Left: Distribution ofL for small and largé\; on a lattice withNs = 6 andM = 1. Middle, Right:
Expectation value ofL| and its susceptibility. The vertical line marks the infinit@lume transition.

3.2 A“sign problem” and its solution

Our numerical approach will be a straightforward Metropdiical update algorithm; however,
the Boltzmann weights to consider are in the form (o@(1 +2A;Re(LiL}))): for high enough
couplings, they can be also negative, thus spoiling the tepiechnique (the partition function
being, overall, still positive). In th8U(2) case, the threshold couplind = 1/4 is well beyond the
phase transition, so that in practice there is no problerarateriticality, but theSU(3) threshold
of 1/9 is very close to the transition and a direct numerical itigation of the model as in Eq[_(3.1)
is impossible.

Our approach to overcome this problem is the following: wegldmexpand the logarithm in
the effective action to some ordbt in powers ofg = A;ReLiLj (undoing the resummation as in
Eqg. (2.8)), obtaining models free of the problem:

M) _ >, 83 4, 32 5 NTARY

P =Y <%(Zq 207+ 2° — 4d* + =9 (~)Md) . @9)
In this way we can identify a critical point for eadh and look for their convergence & — .
Also, we can compare to tH&U(2) case where th® = o value is directly calculable.

3.3 Phase structure, critical coupling and finite size analsis

Ouir first task is to establish the phase structure of the tafeetheory, where we focus on the
physically interesting case 8U(3). Based on the global(3) symmetry of the model, one expects
spontaneous breaking of that symmetry for some criticalevalf the couplinghy . Fig.[2 shows
the behaviour of the field variable as a function ofA;. As expected from the 4d parent theory,
there is indeed a transition from a disordered or mixed phvaitie values ofL scattering about zero,
to an ordered phase at large coupling where the th(8gphases are populated separately. In the
thermodynamic limit, one of these vacua will be chosen aadymmetry is broken spontaneously,
(L) =0forAy < Apcand(L) # 0 for Ay > A1 . Correspondingly, the expectation valug lofrises
abruptly at some critical coupling; ¢, as shown in Fig[]2 (middle). On a finite size lattice, the
phase transition is smoothed out, non-analyticities apecgehed gradually with growing volume,
as the figure illustrates.

The critical couplingA1 ¢, is located via finite-size scaling. After identifying a pse-critical
A1c(Ns) for a number of finite systems, the relation

A1c(Ns) = Arc+ szil/V (3.6)
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Figure 3: Left: Position of the minimum of the Binder cumulaB(¢E) for SU(3),M = 1, for different lattice
sizes. The horizontal line is the thermodynamic limit résgl from the fit to Eq. ). Right: Behaviour
of Bmin(Ns), along with its thermodynamic limit obtained with tWNﬁ) scaling law and the independent
estimateB,, from the|L| histogram. Also the second-order limit valug3ds shown.

is used, withv = 1/3 for theSU(3) first-order transitions and, in ti&J(2) case, the 3d Ising value
v =0.63002 [2}]. Numerically, we found satisfactory resultshadita produced in just a few days
on a desktop PC.

For the definition of the pseudo-critical coupling, one caokl at the energf = —Ss/A1
(neglecting the potential term) or derived quantities, ibugeneral, due to the nonlinearity of
S in the coupling, we preferred to look at the average modilljisone can then defing; ; as
the minimum/maximum of the associated Binder cumulantéspigbility, which indeed featured a
more robust scaling:

4
B(L) =1- gra ¢ x(th= (1= (uh)). 37)

3.4 Critical coupling and order of the transition for SU(3)

The truncated theories withl = 1,3,5 were simulated on lattices with spatial sidds—=
6,8,10 (plusNs = 12 for theM = 1 theory). For each volume; 30 values of the couplings are
sampled by~ 1P update sweeps each. Measurements were taken evédyupdates.

Regardless of the truncation orddr theSU(3) theories display a first-order transition; among
the associated features, we found very long thermalisaiines [0 exp(cNS) as is expected for
tunnelling phenomena (Fi§] 4): for instance, a system with s = 16 would require, around
criticality, ~ 10° update sweeps to thermalise.

First we consider the model witd = 1. The first-order nature of the transition is established
by fitting the pseudo-critical couplings to the scaling ldg. (3.6), withv = 1/3, see Fig[]3
(left). The behaviour of the minimurBp,, of B(|L|) is a further confirmation; this quantity, as
demonstrated in[[24, P9], scales Bgin(Ns) = Bw + BN 3+ ¢(N56), with a thermodynamic
limit which is smaller than the second-order valyg2

B=3"12

2 1 /|Ll1  |L|2\2
: 3.8
(- 1) (38)
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Figure 4: Left: Behaviour ofL with Monte Carlo time for twd\s = 6 trajectories in th&U(3) M = 1 theory
with A; = 0.0935. Right: Histogram fok, obtained from 60 such trajectories. The tunnelling betwibe
central and the three broken-symmetry vacua is apparent.
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Figure 5: Truncation-dependence of the critical points. Left: in ®€(3) case, the data points re-
fer to three system sizes, while the lines mark the extrapdlaritical points; the latter are found at
A1 = 0.09423810),0.1063511),0.1040328) for M = 1,3,5 respectively. Right: foSU(2), pseudo-
critical points forNs = 8 obtained fromB(|L|) and x(|L|) for a variety of truncations (data points) and
compared with the untruncatdl = « values (lines).

with |L|; and|L|, the two local maxima of thé| double-peaked histogram. A direct comparison
between the results f@., from scaling analysis and from the location|bf; shows an agreement

within two standard deviations, the residual discrepareind probably due to neglecting higher-

orderN;® corrections.

In the next step we need to investigate the behaviour of theefmawith higherM. Again
we observe first order transitions, which become sharpdr initreasingM. Moreover, finite-
size effects are stronger for highler, Fig.[3 (left). The critical couplings identified for thd =
1,3,5 effective theories in the thermodynamic limit are alsotgdathere. Judging from these
three values, the series seems to be rapidly converging,omily ~ 3% difference betweeM =
3,5. The residual difference between this estimate andtle oo critical coupling is completely
subdominant compared to the other systematic errors batitrg to the final results. Also, the
direct comparison with th8U(2) case below, where thd = c data are directly available, supports
arapid convergence, Fif. 5 (right).
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3.5 Critical coupling and order of the transition for SU(2)

In this family of theories the transition is second-ordeithwnuch less relaxation problems
(e.g. 4000 steps fdls = 16), larger lattices (up tdls = 28) were available. With the same ap-
proach as folSU(3), the nature of the transition was confirmed i§g) A1c(Ns) scaling with the
3d Ising critical index,(b) Binder cumulant analysis approaching3or large systems, an()

IL| histogram inspection, where a single peak continuouslyesaw the right as the coupling is
increased. All inspected values ldf yielded the same features. Moreover, here a direct compari-
son with theM = oo untruncated model is possible, and shows that a rapid ogewee is indeed
realised (Fig[]5, right); in particular, we found

A1c(M =1) =0.19537442) ; A1c(M =00)=0.2142370) , (3.9)
which indicates quite small systematic deviations due twshhg one particular truncation.

3.6 Two-coupling models forSU(3)

In this section we study the influence of including a secontpting. We consider two possi-
bilities: the first one is switching on the interaction beéneext-to-nearest neighbours. T3id(3)

version of Eq.[(2.70) reads:

z=( /de) [T (1+20ReLiL) H(1+ 20 ReLyLi)emx% . (3.10)
X <ij> kl

We remark that now there are two terms suffering from the abuentioned sign problem: a
truncated expansion is then needed in both, and the twoattioncparameteréM;, M2) should be
chosen in a consistent way, for &l}, with respect to the power imwe want to keep. We adopted
the choice(3,1) after checking numerically that higher values\df give negligible differences in
the results.

In the other model, we allow the nearest neighbours to iot&lao in the adjoint representation
as described before. The partition function in this caseh(thie adjoint part already truncated at
M, = 1) is given by

<ij> <ij>

Z= (U /de> [ (1+20ReLiL)) [ &= WImW)enk (3.11)

with the adjoint trace TPW = |TrW|2 — 1. Also in this case, the truncatidB, 1) was employed.

In these two-dimensional parameter spaces, there is eattithe separating the symmetric
and the broken phases. However, for a gil&n only a one-dimensional manifold in this space
represents the image of the original gauge theory, sindedmtplings are functions of the sale
The strategy was then to identify the shape of the criticad knd find, for each temporal lattice
extent, the intersection with the curve enforcing thatipaldr value ofN;.

In both models, the critical lines were found by interpalatiafter locating 11 critical points
at as many fixed values of the second coupling; it turned aitatinear parametrisation was good
enough in describing them (within our precision, finiteeséffects were practically invisible):

Aic = a+bl, with a= 010628 8), b=—1891( 4). (3.12)
Aic = a+bA, with a= 0.1063715), b= —142222). (3.13)

10
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N, M=1 M = oo 4d YM

3 || 2.15537(89)| 2.1929(13)| 2.1768(30)
4 || 2.28700(55)| 2.3102(08)| 2.2991(02)
5 | 2.36758(40)| 2.3847(06)|| 2.3726(45)
6 | 2.41629(32)| 2.4297(05)|| 2.4265(30)
8 || 2.47419(22)| 2.4836(03)| 2.5104(02)
12 | 2.52821(14)| 2.5341(02)|| 2.6355(10)
16 | 2.55390(10)| 2.5582(02)|| 2.7310(20)

Table 1: Critical couplingsf; for SU(2) from two effective theories compared to simulations of tide 4

theory [31,[3p[ 32)).

The value ofa was always, as expected, compatible with the estimate éoctitical point of the
M = 3 one-coupling theory.

By plotting these critical lines and the family of curves éoghfrom requiring a giverN,
one sees that the latter accumulate towards vanishing dempling asN; increases (Fig[] 6):
this implies that the effect of including those interactiae less and less important at finer lattice
spacings: only at very low values of temporal extent doesgritieision of a second coupling make
any visible difference.

4. Mapping back to 4d Yang-Mills

Having established the critical couplings for our effegtitieories and tested their reliability,
we are now ready to map them back to the original thermal Ydilig-theories by using Eqs[ (2.7,
P.14). In Table$]1] 2 we collect the values for the criticalg@couplingsf., obtained in this way
from the effective theories and compare them to the valuesraa from simulations of the full 4d
theories forSU(2), SU(3), respectively.

The agreement is remarkable in all cases, with the relatn@ ef the effective theory re-
sults compared to the full ones shown in Hip. 7. The comparigalternative truncations of the
logarithm shows once more that it has almost no influence eraticuracy of the final result, as
described earlier. Interestingly, there appears to begioneof best agreement’, with the deviation
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N, [M=1[M=3]M,MxA2)=3,1] M,Mo(Aa) =3,1[ 4dYM

4 | 5768 5.830 5.813 5.773 5.6925(002)
6 | 6.139 | 6.173 6.172 6.164 5.8941(005)
8 | 6.300| 6.324 6.324 6.322 6.0010(250)
10 || 6.390 | 6.408 6.408 6.408 6.1600(070)
12 || 6.448 | 6.462 6.462 6.462 6.2680(120)
14 || 6.488 | 6.500 6.500 6.500 6.3830(100)
16 | 6.517 | 6.528 6.528 6.528 6.4500(500)

Table 2: Critical couplingsB for SU(3) from different effective theories compared to simulatiohthe 4d

theory [31.[3B).

% deviation

M=1 results
M:infini!y [esulls

% deviation

T I T N R R

2

4 6

8 10

12 14 16

M:
(M MOD=E1)
MMy A)=E.D)

Figure 7: Relative error off; predicted by the effective theories when compared to sitioula of the 4d
theories, foISU(2) (left) andSU(3) (right).

growing both for small and largd;. We ascribe this to the fact that there are two competing sys-
tematic errors, as discussed earlier: the validity of thenst coupling series for a given coupling
Aj is better the smalleB and henceN;, whereas the truncation of the next-to-nearest neighbour
interactions gains validity with growindy;. In particular in the case dU(3), there appears to
be a cancellation of the two kinds of systematics, rendethegeffective description better for the

original theory on finer lattices.

The strong-coupling series was inspected both by compahnegesultingB. from series of
different depth and by Padé analysis, and we observe aggatisf convergence. It was also found
that the error due to the truncation of the strong-coupliages is much larger than that from
neglecting higher couplings.

One can also compare the results presented here with tharsetlie inverse Monte Carlo
approach, where the effective theory is found in a compleieh-perturbative way; inspection of
the SU(2) case [1}], in particular, shows that the abrupt change ofature in the inverse Monte
Carlo functionA1 () at the critical point is not captured by our strong-coupléampgproach, which is
consistent with3. marking the radius of convergence also for the series eigpaos$ the effective
couplingA;. Thus, the inverse Monte Carlo approach has a wider rangeliofity whereas the
series approach furnishes analytically known mappingsédet the full and effective theories.
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5. Conclusions

We have derived, by means of strong coupling expansionsifeatiee description for lattice
pure gauge theories at finite temperature which respectidyphe requirement of centre sym-
metry and has only scalar Polyakov loop variables as degrefteedom. Moreover, due to the
dimensional reduction involved, ti&-dependence is encoded completely in the maps from the ef-
fective to the original coupling, whose expansion can be extended, in principle, to higlosrer
We have also considered interaction terms other than tlignigane, namely a next-to-nearest
neighbour interaction and an adjoint-representation liogiperm.

Our Monte Carlo approach to the models, while requiring nsbdemputational resources,
confirms the expected nature of the symmetry-breakingitransor bothSU(2)- andSU(3)-based
effective formulations, and allowed us to predict the catipoint 3. of the original 4d thermal
gauge theories with an accuracy within a few percent for &etaof values ofN;. Particular
attention was devoted to estimating the effect of employliffigrent approximations, with quite
stable answers in support of the good convergence of thesseand of neglecting higher-order
interaction terms, which again does not have a strong edfethe final answers especially at finer
lattices.

An extension of the present work could be the studySof{N) gauge theories witiN > 3
(cf. [B4] and references therein), which can be performedhrin the same way as the cases
examined here; even more intriguing is the possibility tefkéhe theory simple while getting a
step closer to physical QCD, i. e. by introducing fermiond fanite baryon density, for instance by
employing a hopping parameter expansion [23, 35].
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