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1. Introduction

In the framework of non-abelian gauge theories at finite temperature, several effective descrip-
tions have been pursued in order to overcome the infrared problems [1] connected with perturba-
tive approaches to the fundamental theory. A rather successful technique is dimensional reduction
[2, 3]. Thanks to the presence of different energy scales, induced by the finite temperature dy-
namics of the original(3+ 1)-dimensional theory, an integration over the hard modes leads to a
3d effective description which can then be solved in a non-perturbative way (e. g. by Monte Carlo
integration).

In the case of QCD, this technique loses its validity in the confined phase; however, one would
want to devise effective methods to study the vicinity of thedeconfinement transition: this is not
a completely trivial task since the standard perturbative dimensional reduction does not retain the
Z(N) symmetry of the original Yang-Mills theory [4]. One can thenfollow a different strategy,
namely writing down a general theory respecting the desiredsymmetry and then fixing the (many)
couplings by matching with particular observables [5, 6]. While for SU(2) the phase transition
is captured correctly by such approaches [7, 8], for the physically relevantSU(3) gauge theory a
satisfactory fixing of all couplings is still an open issue.

A different way to pin down a 3d effective theory is to employ lattice strong coupling expan-
sions. This idea, first considered in [9], has been pursued byvarious authors [10, 11, 12, 13, 14, 15]
and leads to theories with Polyakov loops as fundamental degrees of freedom. The contribution
from spatial plaquettes was often neglected, a simplification which preserves the universal be-
haviour of the theory; in [16], instead, they were explicitly taken into account. Recent develop-
ments including staggered fermions can be found in [17].

The models proposed here systematically extend this approach by providing series for the
effective couplings up to a certain order and are thus valid beyond the spatial strong coupling
limit. As is to be expected from strong-coupling expansions, our results will have a finite radius
of convergence, which is supposed to coincide with the deconfinement transition: in this sense,
our effective formulation is complementary to weak coupling approaches. The effective actions we
propose are subsequently studied by means of Monte Carlo integration, and the results are shown
to lead to the correct order of the transition as well as to good estimates of the deconfinement point.

2. Derivation of the effective theory

2.1 General strategy andSU(2)

Consider the partition function of a(3+ 1)-dimensional lattice gauge field theory at finite

temperature
(

T = 1
aNτ

)

with gauge groupSU(N) and Wilson’s gauge action

Z =

∫

[dU0] [dUi ]exp

[

β
2N ∑

p

(

tr Up+ tr U†
p

)

]

, β =
2N
g2 . (2.1)

Finite temperature and the bosonic nature of the degrees of freedom imply the use of periodic
boundary conditions in the time direction.
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In order to arrive at an effective three-dimensional theory, we integrate out the spatial degrees
of freedom and get schematically [13]

Z =
∫

[dU0]exp[−Seff] ;

−Seff = ln
∫

[dUi ]exp

[

β
2N ∑

p

(

tr Up+ tr U†
p

)

]

≡ λ1S1+λ2S2+ . . . . (2.2)

We expand aroundβ = 0 and arrange the effective couplingsλn = λn(β ,Nτ) in increasing order
in β of their leading terms. Thus, theλn become less important the highern. As we shall see, the
interaction termsSn depend only on Polyakov loops

L j ≡ tr Wj ≡ tr
Nτ

∏
τ=1

U0(~x j ,τ) . (2.3)

With sufficiently accurate knowledge of the relationsλn(β ,Nτ), we are able to convert the cou-
plings of the three-dimensional theory to those of the full theory. Determining the critical parame-
tersλn,c of the effective theory then gives a whole array of criticalβc(Nτ) for - in principle - allNτ .
In the following we calculate strong coupling, i.e. smallβ , expansions of the leadingλn.

Since the calculations are quite similar for different numbers of colours, we now specialise
our derivation to the simpler case ofSU(2) and later provide the necessary changes forSU(3). For
more details see [18]. Using the character expansion as described e.g. in [19, 20], the effective
action according to Eq. (2.2) can be written as

−Seff = ln
∫

[dUi ]∏
p

[

1+ ∑
r 6=0

drar(β )χr (Up)

]

, (2.4)

where the sum extends over all irreducible representationsr with dimensiondr and characterχr .
The expansion coefficientsar(β ) are accurately known [19] and in the following we useu ≡ af

as expansion parameter instead ofβ for its better apparent convergence. The logarithm in this
definition allows us to use the method of moments and cumulants [21], and we get the following
cluster expansion

−Seff = ∑
C=(X

nl
l )

a(C)∏
l

Φ
(

Xl ;
{

Wj
}

)nl
; (2.5)

Φ
(

Xl ;
{

Wj
}

)

=

∫

[dUi ] ∏
p∈Xl

drparpχrp(Up) ,

where the combinatorial factora(C) equals 1 for a single polymerXi and−1 for two non-identical
connected polymers. For clusters consisting of more than two polymers,a(C) depends on how
these polymers are connected. Our task is then to group together all graphs yielding the same
interaction terms up to some order inβ , and this finally gives the strong coupling expansion of the
corresponding effective couplingλn.
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Li

LjFigure 1:

1

Figure 1: First graph with a nontrivial contribution after spatial integration for a lattice with temporal extent
Nτ = 4. Four plaquettes in the fundamental representation lead to an interaction term involving two adjacent
fundamental Polyakov loopsLi andL j .

2.2 Leading order effective action

The leading order result of the effective action has first been calculated in [10] and corresponds
to a sequence ofNτ plaquettes that wind around the lattice in temporal direction, cf. Fig. 1.. Its
contribution is given by:

λ1S1 = uNτ ∑
<i j>

LiL j . (2.6)

Hence, to leading order the first coupling of the effective theory isλ1(u,Nτ) = uNτ .
For additional terms of the series forλ1, we can use most of the graphs that also appear in the

strong coupling expansion of the Polyakov loop susceptibility [23]. These corrections involve addi-
tional plaquettes, are hence of higher order inu and we call these attached plaquettes decorations.
Carrying out the calculations, we get the following resultsthrough orderu10 in the corrections
relative to the leading order graph:

λ1(u,2) = u2 exp

[

2

(

4u4−8u6+
134
3

u8− 49044
405

u10
)]

,

λ1(u,3) = u3 exp

[

3

(

4u4−4u6+
128
3

u8− 36044
405

u10
)]

,

λ1(u,4) = u4 exp

[

4

(

4u4−4u6+
140
3

u8− 37664
405

u10
)]

,

λ1(u,Nτ ≥ 5) = uNτ exp

[

Nτ

(

4u4−4u6+
140
3

u8− 36044
405

u10
)]

. (2.7)

For smallerNτ some graphs do not contribute since the temporal extent of their decoration is≥ Nτ

so that they do not fit into the lattice.

2.3 Higher order terms

There occur several types of higher order graphs: larger numbers of loops involved, Polyakov
loops at distances larger than one and Polyakov loops in higher dimensional representations. We
begin by considering powers of the leading order term. Inspection of higher order terms shows that
one can arrange a subclass of these terms in the following manner

∑
<i j>

(

λ1LiL j −
λ 2

1

2
L2

i L2
j +

λ 3
1

3
L3

i L3
j − . . .

)

= ∑
<i j>

ln(1+λ1LiL j) . (2.8)
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To see this, one calculates the corresponding graphs withL2
i L2

j or L3
i L3

j , and the combinatorial
factora(C) of Eq. (2.6) gives the correct prefactors for the series to represent a logarithm.

Next, let us consider couplings pertaining to next-to-nearest neighbour interactions. These
appear once additional plaquettes are taken into account. Naively, the leading contribution should
correspond to a planar graph with Polyakov loops at distancetwo. However, this graph is precisely
cancelled by the contribution of the nearest-neighbour graph squared and its associated combina-
torial factor−1. The leading non-zero contribution therefore comes from L-shaped graphs and is
given by

λ2(u,Nτ)S2 = Nτ(Nτ −1)u2Nτ+2∑
[kl]

LkLl , (2.9)

where we have two additional spatial plaquettes and we sum over all pairs of loops with a diagonal
distance of

√
2a, abbreviated by[kl]. With the same steps leading to Eq. (2.8), we finally arrive at

theSU(2) partition function

Z =

∫

[dW] ∏
<i j>

[1+λ1LiL j ]∏
[kl]

[1+λ2LkLl ] . (2.10)

Finally, we include some remarks about the Polyakov loops inhigher dimensional representations.
Consider, e.g., the adjoint Polyakov loop: the leading order term emerging from a strong coupling
expansion is

λaSa = vNτ ∑
<i j>

χa(Wi)χa(Wj) , v=
2
3

u2+
2
9

u4+
16
135

u6+ . . .

and henceλa ∼ u2Nτ , which is formally of lower order than the couplingλ2. To next-to-leading
order (valid for allNτ ≥ 2) we have

λa = vNτ

(

1+Nτ
8
3

u6

v
+ . . .

)

. (2.11)

Effects of higher representations have also been investigated in the literature [14, 15, 25].

2.4 The effective action forSU(3)

In the case ofSU(3) the same steps as forSU(2) apply. The only difference we have to keep
in mind is thatSU(3) also has an anti-fundamental representation and consequently there is also
a complex conjugate Polyakov loop variableL∗

i . Thus we get the one-coupling and two-coupling
partition functions

Z1 =

∫

[dW] ∏
<i j>

[

1+λ1
(

LiL
∗
j +L∗

i L j
)]

, (2.12)

Z2 =

∫

[dW] ∏
<i j>

[

1+λ1
(

LiL
∗
j +L∗

i L j
)]

∏
[kl]

[1+λ2(LkL
∗
l +L∗

kLl )] . (2.13)
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The effective couplingλ1(u,Nτ ) is obtained as (for this gauge group we consider only even values
of Nτ):

λ1(2,u) = u2 exp
[

2
(

4u4+12u5−18u6−36u7

+
219
2

u8+
1791
10

u9+
830517
5120

u10
)]

,

λ1(4,u) = u4 exp
[

4
(

4u4+12u5−14u6−36u7

+
295
2

u8+
1851
10

u9+
1035317

5120
u10

)]

,

λ1(Nτ ≥ 6,u) = uNτ exp
[

Nτ
(

4u4+12u5−14u6−36u7

+
295
2

u8+
1851
10

u9+
1055797

5120
u10

)]

. (2.14)

For the first terms of the next-to-nearest neighbour coupling λ2(Nτ ,u) we find

λ2(2,u) = u4
[

2u2+6u4+31u6
]

,

λ2(4,u) = u8
[

12u2+26u4+364u6
]

,

λ2(6,u) = u12
[

30u2+66u4
]

,

λ2(Nτ ≥ 8,u) = u2Nτ
[

Nτ(Nτ −1)u2] , (2.15)

while the leading coupling of adjoint loops is (valid forNτ ≥ 2)

λa = vNτ

(

1+Nτ
3
2

u6

v
+ . . .

)

, v=
9
8

u2− 9
8

u3+
81
32

u4+ . . . (2.16)

3. Numerical simulation of the effective theories

3.1 The one coupling model

For the purpose of numerical simulations, a further simplification is achieved by using the
trace of the Polyakov loops for the path integral measure as degrees of freedom (complex numbers,
|Lx| ≤ 3, instead of matrices), and rewrite the one-coupling partition function forSU(3), Eq. (2.12),

Z =
(

∏
x

∫

dLx

)

e−Seff ; Seff =− ∑
<i j>

log(1+2λ1ReLiL
∗
j )−∑

x
Vx . (3.1)

The potential termVx is the Jacobian induced by the Haar measure of the original group in-
tegration; rotating the matrices to the diagonal form diag(eiθ ,eiφ ,e−i(θ+φ)), with |θ |, |φ | ≤ π, we
have [26]:

Vx =
1
2

log(27−18|Lx|2+8ReL3
x −|Lx|4) . (3.2)

The integration measure actually used in our simulation then takes the form
∫

dLxe
Vx =

∫ +π

−π
dφx

∫ +π

−π
dθxe

Vx . (3.3)

When working on theSU(2) theory,−2≤ Lx ≤+2 is a real number and we simply have
∫ +2

−2
dLxe

Vx , Vx =
1
2

log(4−L2
x) . (3.4)

6
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|L

|)

λ1

Ns = 06
Ns = 10
Ns = 12

Figure 2: Left: Distribution ofL for small and largeλ1 on a lattice withNs = 6 andM = 1. Middle, Right:
Expectation value of|L| and its susceptibility. The vertical line marks the infinite-volume transition.

3.2 A “sign problem” and its solution

Our numerical approach will be a straightforward Metropolis local update algorithm; however,
the Boltzmann weights to consider are in the form exp(log(1+2λ1Re(LiL∗

j ))): for high enough
couplings, they can be also negative, thus spoiling the update technique (the partition function
being, overall, still positive). In theSU(2) case, the threshold couplingλ T = 1/4 is well beyond the
phase transition, so that in practice there is no problem around criticality, but theSU(3) threshold
of 1/9 is very close to the transition and a direct numerical investigation of the model as in Eq. (3.1)
is impossible.

Our approach to overcome this problem is the following: we Taylor-expand the logarithm in
the effective action to some orderM in powers ofq ≡ λ1ReLiL∗

j (undoing the resummation as in
Eq. (2.8)), obtaining models free of the problem:

S(M)
eff =−∑

x
Vx− ∑

<i j>

(

2q−2q2+
8
3

q3−4q4+
32
5

q5− . . .− (−1)M 2M

M
qM

)

. (3.5)

In this way we can identify a critical point for eachM and look for their convergence asM → ∞.
Also, we can compare to theSU(2) case where theM = ∞ value is directly calculable.

3.3 Phase structure, critical coupling and finite size analysis

Our first task is to establish the phase structure of the effective theory, where we focus on the
physically interesting case ofSU(3). Based on the globalZ(3) symmetry of the model, one expects
spontaneous breaking of that symmetry for some critical value of the couplingλ1,c. Fig. 2 shows
the behaviour of the field variableL as a function ofλ1. As expected from the 4d parent theory,
there is indeed a transition from a disordered or mixed phase, with values ofL scattering about zero,
to an ordered phase at large coupling where the threeZ(3)-phases are populated separately. In the
thermodynamic limit, one of these vacua will be chosen and the symmetry is broken spontaneously,
〈L〉= 0 for λ1 < λ1,c and〈L〉 6= 0 for λ1 > λ1,c. Correspondingly, the expectation value of|L| rises
abruptly at some critical couplingλ1,c, as shown in Fig. 2 (middle). On a finite size lattice, the
phase transition is smoothed out, non-analyticities are approached gradually with growing volume,
as the figure illustrates.

The critical coupling,λ1,c, is located via finite-size scaling. After identifying a pseudo-critical
λ1,c(Ns) for a number of finite systems, the relation

λ1,c(Ns) = λ1,c+bN−1/ν
s (3.6)

7
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 0.0925

 0.093

 0.0935

 0.094

 6  7  8  9  10  11  12

λ 1

Ns

data
first-order fit

TD limit 0.094238(10)
 0.64

 0.645

 0.65

 0.655

 0.66

 0.665

 0.67

 6  7  8  9  10

B
m

in

Ns

Data
2/3

Scaling of Bmin
|L| histogram

Figure 3: Left: Position of the minimum of the Binder cumulantB(E) for SU(3),M = 1, for different lattice
sizes. The horizontal line is the thermodynamic limit resulting from the fit to Eq. (3.6). Right: Behaviour
of Bmin(Ns), along with its thermodynamic limit obtained with theO(N−3

s ) scaling law and the independent
estimateB∞ from the|L| histogram. Also the second-order limit value 2/3 is shown.

is used, withν = 1/3 for theSU(3) first-order transitions and, in theSU(2) case, the 3d Ising value
ν = 0.63002 [27]. Numerically, we found satisfactory results with data produced in just a few days
on a desktop PC.

For the definition of the pseudo-critical coupling, one can look at the energyE = −Seff/λ1

(neglecting the potential term) or derived quantities, butin general, due to the nonlinearity of
Seff in the coupling, we preferred to look at the average modulus|L|; one can then defineλ1,c as
the minimum/maximum of the associated Binder cumulant/susceptibility, which indeed featured a
more robust scaling:

B(|L|) = 1− 〈|L|4〉
3〈|L|2〉2 ; χ(|L|) =

〈(

|L|− 〈|L|〉
)2〉

. (3.7)

3.4 Critical coupling and order of the transition for SU(3)

The truncated theories withM = 1,3,5 were simulated on lattices with spatial sizesNs =

6,8,10 (plusNs = 12 for theM = 1 theory). For each volume,∼ 30 values of the couplings are
sampled by∼ 106 update sweeps each. Measurements were taken every∼ 30 updates.

Regardless of the truncation orderM, theSU(3) theories display a first-order transition; among
the associated features, we found very long thermalisationtimes ∝ exp(cN3

s ) as is expected for
tunnelling phenomena (Fig. 4): for instance, a system with size Ns = 16 would require, around
criticality, ∼ 106 update sweeps to thermalise.

First we consider the model withM = 1. The first-order nature of the transition is established
by fitting the pseudo-critical couplings to the scaling law,Eq. (3.6), withν = 1/3, see Fig. 3
(left). The behaviour of the minimumBmin of B(|L|) is a further confirmation; this quantity, as
demonstrated in [28, 29], scales asBmin(Ns) = B∞ +B(2)N−3

s +O(N−6
s ), with a thermodynamic

limit which is smaller than the second-order value 2/3,

B∞ =
2
3
− 1

12

( |L|1
|L|2

− |L|2
|L|1

)2
, (3.8)

8
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Figure 4: Left: Behaviour ofL with Monte Carlo time for twoNs= 6 trajectories in theSU(3) M = 1 theory
with λ1 = 0.0935. Right: Histogram forL, obtained from 60 such trajectories. The tunnelling between the
central and the three broken-symmetry vacua is apparent.

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 1  2  3  4  5

λ 1

M (truncation order)

Ns= 6 data
Ns= 8 data
Ns=10 data

Critical, M=1
Critical, M=3
Critical, M=5

 0.2

 0.21

 0.22

 0.23

 0.24

 1  2  3  4  5  6  7  8

λ 1

M (truncation order)

data from B(|L|)
data from χ(|L|)

M=infinity, B(|L|)
M=infinity, χ(|L|)

Figure 5: Truncation-dependence of the critical points. Left: in theSU(3) case, the data points re-
fer to three system sizes, while the lines mark the extrapolated critical points; the latter are found at
λ1,c = 0.094238(10),0.10635(11),0.10403(28) for M = 1,3,5 respectively. Right: forSU(2), pseudo-
critical points forNs = 8 obtained fromB(|L|) and χ(|L|) for a variety of truncations (data points) and
compared with the untruncatedM = ∞ values (lines).

with |L|1 and|L|2 the two local maxima of the|L| double-peaked histogram. A direct comparison
between the results forB∞ from scaling analysis and from the location of|L|i shows an agreement
within two standard deviations, the residual discrepancy being probably due to neglecting higher-
orderN−6

s corrections.

In the next step we need to investigate the behaviour of the models with higherM. Again
we observe first order transitions, which become sharper with increasingM. Moreover, finite-
size effects are stronger for higherM, Fig. 5 (left). The critical couplings identified for theM =

1,3,5 effective theories in the thermodynamic limit are also quoted there. Judging from these
three values, the series seems to be rapidly converging, with only ∼ 3% difference betweenM =

3,5. The residual difference between this estimate and theM = ∞ critical coupling is completely
subdominant compared to the other systematic errors contributing to the final results. Also, the
direct comparison with theSU(2) case below, where theM =∞ data are directly available, supports
a rapid convergence, Fig. 5 (right).
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3.5 Critical coupling and order of the transition for SU(2)

In this family of theories the transition is second-order; with much less relaxation problems
(e.g. 4000 steps forNs = 16), larger lattices (up toNs = 28) were available. With the same ap-
proach as forSU(3), the nature of the transition was confirmed by:(a) λ1,c(Ns) scaling with the
3d Ising critical index,(b) Binder cumulant analysis approaching 2/3 for large systems, and(c)
|L| histogram inspection, where a single peak continuously moves to the right as the coupling is
increased. All inspected values ofM yielded the same features. Moreover, here a direct compari-
son with theM = ∞ untruncated model is possible, and shows that a rapid convergence is indeed
realised (Fig. 5, right); in particular, we found

λ1,c(M = 1) = 0.195374(42) ; λ1,c(M = ∞) = 0.21423(70) , (3.9)

which indicates quite small systematic deviations due to choosing one particular truncation.

3.6 Two-coupling models forSU(3)

In this section we study the influence of including a second coupling. We consider two possi-
bilities: the first one is switching on the interaction between next-to-nearest neighbours. TheSU(3)
version of Eq. (2.10) reads:

Z =
(

∏
x

∫

dLx

)

∏
<i j>

(1+2λ1ReLiL
∗
j )∏

[kl]

(1+2λ2ReLkL
∗
l )e

∑xVx . (3.10)

We remark that now there are two terms suffering from the above-mentioned sign problem: a
truncated expansion is then needed in both, and the two truncation parameters(M1,M2) should be
chosen in a consistent way, for allNτ , with respect to the power inu we want to keep. We adopted
the choice(3,1) after checking numerically that higher values ofM2 give negligible differences in
the results.

In the other model, we allow the nearest neighbours to interact also in the adjoint representation
as described before. The partition function in this case (with the adjoint part already truncated at
M2 = 1) is given by

Z =
(

∏
x

∫

dLx

)

∏
<i j>

(1+2λ1ReLiL
∗
j ) ∏

<i j>
eλa(Tr(a)Wi)(Tr(a)Wj )e∑xVx , (3.11)

with the adjoint trace Tr(a)W = |TrW|2−1. Also in this case, the truncation(3,1) was employed.
In these two-dimensional parameter spaces, there is a critical line separating the symmetric

and the broken phases. However, for a givenNτ , only a one-dimensional manifold in this space
represents the image of the original gauge theory, since both couplings are functions of the soleu.
The strategy was then to identify the shape of the critical line and find, for each temporal lattice
extent, the intersection with the curve enforcing that particular value ofNτ .

In both models, the critical lines were found by interpolation after locating 11 critical points
at as many fixed values of the second coupling; it turned out that a linear parametrisation was good
enough in describing them (within our precision, finite-size effects were practically invisible):

λ1,c = a+bλ2 with a= 0.10628( 8), b=−1.891( 4) . (3.12)

λ1,c = a+bλa with a= 0.10637(15), b=−1.422(22) . (3.13)
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Figure 6: Critical line in the two-coupling space, determined fromχ(|L|). Dashed lines give the parameter
space representing a 4d theory with fixedNτ . Left: (λ1,λ2). Right: (λ1,λa).

Nτ M = 1 M = ∞ 4d YM

3 2.15537(89) 2.1929(13) 2.1768(30)
4 2.28700(55) 2.3102(08) 2.2991(02)
5 2.36758(40) 2.3847(06) 2.3726(45)
6 2.41629(32) 2.4297(05) 2.4265(30)
8 2.47419(22) 2.4836(03) 2.5104(02)
12 2.52821(14) 2.5341(02) 2.6355(10)
16 2.55390(10) 2.5582(02) 2.7310(20)

Table 1: Critical couplingsβc for SU(2) from two effective theories compared to simulations of the 4d
theory [31, 30, 32]).

The value ofa was always, as expected, compatible with the estimate for the critical point of the
M = 3 one-coupling theory.

By plotting these critical lines and the family of curves coming from requiring a givenNτ ,
one sees that the latter accumulate towards vanishing second-coupling asNτ increases (Fig. 6):
this implies that the effect of including those interactions is less and less important at finer lattice
spacings: only at very low values of temporal extent does theinclusion of a second coupling make
any visible difference.

4. Mapping back to 4d Yang-Mills

Having established the critical couplings for our effective theories and tested their reliability,
we are now ready to map them back to the original thermal Yang-Mills theories by using Eqs. (2.7,
2.14). In Tables 1, 2 we collect the values for the critical gauge couplings,βc, obtained in this way
from the effective theories and compare them to the values obtained from simulations of the full 4d
theories forSU(2),SU(3), respectively.

The agreement is remarkable in all cases, with the relative error of the effective theory re-
sults compared to the full ones shown in Fig. 7. The comparison of alternative truncations of the
logarithm shows once more that it has almost no influence on the accuracy of the final result, as
described earlier. Interestingly, there appears to be a ‘region of best agreement’, with the deviation
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Nτ M = 1 M = 3 M1,M2(λ2) = 3,1 M1,M2(λa) = 3,1 4d YM

4 5.768 5.830 5.813 5.773 5.6925(002)
6 6.139 6.173 6.172 6.164 5.8941(005)
8 6.300 6.324 6.324 6.322 6.0010(250)
10 6.390 6.408 6.408 6.408 6.1600(070)
12 6.448 6.462 6.462 6.462 6.2680(120)
14 6.488 6.500 6.500 6.500 6.3830(100)
16 6.517 6.528 6.528 6.528 6.4500(500)

Table 2: Critical couplingsβc for SU(3) from different effective theories compared to simulationsof the 4d
theory [31, 33]).
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Figure 7: Relative error ofβc predicted by the effective theories when compared to simulations of the 4d
theories, forSU(2) (left) andSU(3) (right).

growing both for small and largeNτ . We ascribe this to the fact that there are two competing sys-
tematic errors, as discussed earlier: the validity of the strong coupling series for a given coupling
λi is better the smallerβ and henceNτ , whereas the truncation of the next-to-nearest neighbour
interactions gains validity with growingNτ . In particular in the case ofSU(3), there appears to
be a cancellation of the two kinds of systematics, renderingthe effective description better for the
original theory on finer lattices.

The strong-coupling series was inspected both by comparingthe resultingβc from series of
different depth and by Padé analysis, and we observe a satisfactory convergence. It was also found
that the error due to the truncation of the strong-coupling series is much larger than that from
neglecting higher couplings.

One can also compare the results presented here with those from the inverse Monte Carlo
approach, where the effective theory is found in a completely non-perturbative way; inspection of
theSU(2) case [14], in particular, shows that the abrupt change of curvature in the inverse Monte
Carlo functionλ1(β ) at the critical point is not captured by our strong-couplingapproach, which is
consistent withβc marking the radius of convergence also for the series expansion of the effective
coupling λ1. Thus, the inverse Monte Carlo approach has a wider range of validity whereas the
series approach furnishes analytically known mappings between the full and effective theories.
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5. Conclusions

We have derived, by means of strong coupling expansions, an effective description for lattice
pure gauge theories at finite temperature which respects explicitly the requirement of centre sym-
metry and has only scalar Polyakov loop variables as degreesof freedom. Moreover, due to the
dimensional reduction involved, theNτ-dependence is encoded completely in the maps from the ef-
fective to the original couplingβ , whose expansion can be extended, in principle, to higher orders.
We have also considered interaction terms other than the leading one, namely a next-to-nearest
neighbour interaction and an adjoint-representation coupling term.

Our Monte Carlo approach to the models, while requiring modest computational resources,
confirms the expected nature of the symmetry-breaking transition for bothSU(2)- andSU(3)-based
effective formulations, and allowed us to predict the critical point βc of the original 4d thermal
gauge theories with an accuracy within a few percent for a variety of values ofNτ . Particular
attention was devoted to estimating the effect of employingdifferent approximations, with quite
stable answers in support of the good convergence of the series, and of neglecting higher-order
interaction terms, which again does not have a strong effecton the final answers especially at finer
lattices.

An extension of the present work could be the study ofSU(N) gauge theories withN > 3
(cf. [34] and references therein), which can be performed much in the same way as the cases
examined here; even more intriguing is the possibility to keep the theory simple while getting a
step closer to physical QCD, i. e. by introducing fermions and finite baryon density, for instance by
employing a hopping parameter expansion [23, 35].

Acknowledgements

S. L. and O. P. are partially supported by the German BMBF grant FAIR theory: the QCD
phase diagram at vanishing and finite baryon density, 06MS9150, and by the Helmholtz Interna-
tional Center for FAIR within the LOEWE program of the State of Hesse. J. L. acknowledges
financial support by the EU projectStudy of Strongly interacting Matter, No. 227431, and by
the BMBF under the projectHeavy Quarks as a Bridge between Heavy Ion Collisions and QCD,
06BI9002.

References

[1] A. D. Linde, Phys. Lett. B96 (1980) 289.

[2] P. H. Ginsparg, Nucl. Phys. B170(1980) 388;

[3] T. Appelquist and R. D. Pisarski, Phys. Rev. D23 (1981) 2305.

[4] K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Nucl. Phys. B503(1997) 357
[arXiv:hep-ph/9704416].

[5] A. Vuorinen and L. G. Yaffe, Phys. Rev. D74 (2006) 025011 [arXiv:hep-ph/0604100].

[6] R. D. Pisarski, Phys. Rev. D74 (2006) 121703 [arXiv:hep-ph/0608242].

13



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
1
9
6

Effective Polyakov-loop theory J. Langelage, S. Lottini

[7] Ph. de Forcrand, A. Kurkela and A. Vuorinen, Phys. Rev. D77 (2008) 125014 [arXiv:0801.1566
[hep-ph]].

[8] A. Dumitru, D. Smith Phys. Rev. D77 (2008) 094022 [arXiv:0711.0868v1 [hep-lat]].

[9] B. Svetitsky and L. G. Yaffe, Nucl. Phys. B210(1982) 423.

[10] J. Polonyi and K. Szlachanyi, Phys. Lett. B110(1982) 395.

[11] F. Green and F. Karsch, Nucl. Phys. B238(1984) 297.

[12] A. Gocksch and M. Ogilvie, Phys. Rev. D31 (1985) 877.

[13] M. Gross and J. F. Wheater, Nucl. Phys. B240(1984) 253.

[14] T. Heinzl, T. Kaestner and A. Wipf, Phys. Rev. D72 (2005) 065005 [arXiv:hep-lat/0502013].

[15] C. Wozar, T. Kaestner, A. Wipf and T. Heinzl, Phys. Rev. D76 (2007) 085004 [arXiv:0704.2570
[hep-lat]].

[16] M. Billò, M. Caselle, A. D’Adda and S. Panzeri, Nucl. Phys. B472(1996) 163
[arXiv:hep-lat/9601020].

[17] T. Z. Nakano, K. Miura and A. Ohnishi, arXiv:1009.1518 [hep-lat].

[18] J. Langelage, S. Lottini and O. Philipsen, arXiv:1010.0951 [hep-lat].

[19] I. Montvay and G. Münster,Cambridge, UK: Univ. Pr. (1994) 491 p. (Cambridge monographs on
mathematical physics).

[20] J. M. Drouffe and J. B. Zuber, Phys. Rept.102, 1 (1983).

[21] G. Münster, Phys. Lett. B95 (1980) 59.

[22] J. Langelage, G. Münster and O. Philipsen, JHEP0807(2008) 036 [arXiv:0805.1163 [hep-lat]].

[23] J. Langelage and O. Philipsen, JHEP1001(2010) 089 [arXiv:0911.2577 [hep-lat]].

[24] M. Mathur, arXiv:hep-lat/9501036.

[25] A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos and R. D. Pisarski, Phys. Rev. D70 (2004) 034511
arXiv:hep-th/0311223.

[26] M. Gross, J. Bartholomew and D. Hochberg, Report No. EFI-83-35-CHICAGO, 1983.

[27] M. Hasenbusch, arXiv:1004.4486.

[28] J. Lee and J. M. Kosterlitz, Phys. Rev. B43 (1991) 3265.

[29] A. Billoire, T. Neuhaus and B. Berg, Nucl. Phys. B396(1993) 779.

[30] I. L. Bogolubsky, V. K. Mitrjushkin, A. V. Sergeev, M. Müller-Preussker and H. Stüben, Nucl. Phys.
Proc. Suppl.129(2004) 611.

[31] J. Fingberg, U. M. Heller and F. Karsch, Nucl. Phys. B392(1993) 493.

[32] A. Velytsky, Int. J. Mod. Phys. C19, 1079 (2008) [arXiv:0711.0748 [hep-lat]].

[33] J. Kogut, M. Stone and H. W. Wyld, Phys. Rev. Lett.50 (1983) 393.

[34] M. Panero, Phys. Rev. Lett.103(2009) 232001 [arXiv:0907.3719 [hep-lat]].

[35] J. Langelage and O. Philipsen, JHEP1004(2010) 055 [arXiv:1002.1507 [hep-lat]].

14


