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Lattice QCD (LQCD) has the sign problem at real quark chemical potential. There are some

regions with no sign problem; one is the imaginary quark chemical potential region and the others

are the real and imaginary isospin chemical potential regions. We show that the Polyakov-loop
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determine the model parameters from the data and predict the QCD phase diagram in the real
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1. Introduction

The QCD phase diagram is essential for understanding not only natural phenomena such as
compact stars and the early universe but also laboratory experiments such as relativistic heavy-
ion collisions. Quantitative calculations of the phase diagram from the first-principle lattice QCD
(LQCD) have the sign problem at real quark chemical potential (µq). Though several approaches
have been proposed to circumvent the difficulty, these are still far from perfection.

As an approach complementary to the first-principle LQCD, we can consider effective mod-
els such as the Nambu–Jona-Lasinio (NJL) model and the Polyakov-loop extended Nambu–Jona-
Lasinio (PNJL) model. The NJL model describes the chiral symmetry breaking, but not the con-
finement mechanism. The PNJL model is constructed so as to treat both the mechanisms. In
the NJL-type models, the input parameters are determined atµq = 0. It is then highly nontrivial
whether the models predict the dynamics of QCD at finiteµq properly. This should be tested from
QCD. Fortunately, this is possible in some regions without sign problem, such as imaginaryµq,
real and imaginary isospin chemical potential (µI).

In this paper, we consider two-flavor QCD and show the reliability of the PNJL model by
comparing the model result with LQCD data in their regions.

2. Imaginary Quark Chemical Potential

Roberge and Weiss [1] found that the thermodynamic potential,ΩQCD(θq), of QCD at imag-
inary chemical potentialµq = iθqT has a periodicityΩQCD(θq) = ΩQCD(θq + 2πk/3), showing
that ΩQCD(θq + 2πk/3) is transformed intoΩQCD(θq) by the Z3 transformation with integerk.
This means that QCD is invariant under a combination of theZ3 transformation and a parameter
transformationθq → θq +2πk/3. We call this combination the extendedZ3 transformation. Thus,
ΩQCD(θq) has the extendedZ3 symmetry, and hence quantities invariant under the extendedZ3

transformation have the RW periodicity [2].
We reveal that the PNJL model has the RW periodicity [2]. The two-flavor PNJL Lagrangian [3]

in Euclidean spacetime is

L = q̄(iγνDν − γ4µq +m0)q−Gs[(q̄q)2 +(q̄iγ5⃗τq)2]+UΦ(Φ[A],Φ∗[A],T), (2.1)

whereq denotes the two-flavor quark field,m0 does the current quark mass, andDν = ∂ν − iAνδν0

with the gauge fieldAν . In the chiral limit (m0 = 0), the Lagrangian density has the exactSU(2)R×
SU(2)L ×U(1)v ×SU(3)c symmetry. The Polyakov potentialUΦ [4] is a function of the Polyakov
loopΦ = 1

3trc L with L = eiA4/T and its Hermitian conjugateΦ∗. The PNJL thermodynamic poten-
tial Ω in the mean field approximation (MFA) is

Ω = −4
∫

d3p
(2π)3

[
3ε(p)+T ∑

λ=±1

ln detc(1+Lλ e−ε(p)/T+iλθq)
]
+Gsσ2 +UΦ, (2.2)

whereε =
√

p2 +M2, M = m0−2Gsσ , andσ = ⟨q̄q⟩. The thermodynamic potentialΩ is invariant
under the extendedZ3 transformation,

L → e−i2πk/3L, θq → θq +2πk/3. (2.3)
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Figure 1: Phase diagram in the real and imaginaryµq regions by the PNJL model with the parameter
set [2] that reproduces the LQCD data at imaginaryµq. The points ERW and EC are the endpoints of the
RW transition and the first-order chiral transition respectively. The solid line denotes the first-order chiral
transition, the dashed (dotted) line does the crossover deconfinement (chiral) transition, and the dot-dashed
line does the RW transition. Lattice data (×) are taken from [5].

Therefore,Ω has the RW periodicity.
At the present stage, the PNJL model is only a realistic effective model that possesses both

the extendedZ3 symmetry and the chiral symmetry [2]. This property guarantees that the phase
diagram evaluated by the PNJL model has the RW periodicity in the imaginaryµq region, and there-
fore makes it possible to compare the PNJL result with LQCD data quantitatively in the imaginary
µq region. Actually, the PNJL model succeeds in reproducing the LQCD data [5] by introducing
the vector-type four-quark interaction and the scalar-type eight-quark interaction [2]. The QCD
phase diagram in the realµq region is predicted by the PNJL model with the parameter set [2] that
reproduces the LQCD data at imaginaryµq, as shown in Fig.1.
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Figure 2: Phase diagrams of the deconfinement and the RW phase transition in theθq − T plane with
RRW-typeUΦ [4] (panel (a)) and F-typeUΦ [3] (panel (b)). The solid (dashed) line denotes the first-order
(crossover) deconfinement transition, and the dot-dashed line does the RW transition. Point ERW is the
endpoint of the RW transition. Lattice data (+) are taken from [5].

The phase diagrams of the deconfinement and the RW phase transition in theθq−T plane by
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using the PNJL models with RRW-typeUΦ [4] and F-typeUΦ [3] are shown in Fig.2 (a) and (b),
respectively. Thus, the PNJL model with RRW-typeUΦ reproduces LQCD data [5] at finiteθq, but
the model with F-typeUΦ doesn’t. In this sense, the PNJL model with RRW-typeUΦ calculation
is more reliable.
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Figure 3: (a) The phase structure near ERW with RRW-typeUΦ is magnified. The solid (dashed) line denotes
the first-order (crossover) deconfinement transition, and the dot-dashed line does the RW transition. Points
ERW and CP are an endpoint of the RW transition and critical endpoints, respectively. (b)T dependence of
the chiral and Polyakov-loop susceptibilities,χσ andχΦ, at the point CP.

The phase diagram for RRW-typeUΦ near ERW is magnified in Fig.3 (a). The RW endpoint
is first order for RRW-typeUΦ, but it’s second order for F-typeUΦ [9]. Thus, the order of the
deconfinement phase transition near the RW endpoint strongly depends onUΦ taken. The result of
the PNJL calculation with RRW-typeUΦ is consistent with the LQCD data [6] where the order of
the RW phase transition at ERW is first order for small quark mass. Point ERW is the triple point
where the three first-order lines meet. Thus, there are two critical endpoints (CP) for each triple
point ; CP is a point where the crossover and the first order lines meet. Figure3 (b) shows the chiral
and the Polyakov loop susceptibilities,χσ andχΦ, as a function ofT near CP. The susceptibilities
are divergent at CP. Hence, the chiral and deconfinement transitions are second order at CP.

3. Imaginary Isospin Chemical Potential

LQCD has no sign problem at both real and imaginaryµI . Recently, LQCD data were mea-
sured there and also in the case where bothµI andµq are imaginary [7].

In the chiral limit, QCD has the chiralSUL(2)×SUR(2) symmetry whenµI = 0. However,
at µI ̸= 0 this symmetry is reduced toUI3(1)×UAI3(1), whereUI3(1) is the isospin subgroup and
UAI3(1) is the axial isospin subgroup. In the casemu = md ̸= 0, only theUI3(1) symmetry survives.
When QCD vacuum keeps theUv(1) andUI3(1) symmetries, the baryon chargeB = V⟨B̂⟩ is either
zero or integer and the isospin chargeI3 = V⟨Î3⟩ is also either zero or half-integer, whereB̂ =
q̄γ4q, Î3 = q̄γ4I3q andV is the volume. In the partition functionZ, the baryon- and the isospin-
charge operator appear through the form exp[V(2iθI Î3 + iθqB̂)] whereµq,I = iTθq,I . Therefore,Z
has the periodicityZ(θq,θI) = Z(θq,θI +2π). In the isospin symmetric limitmu = md, Z is invariant
under the interchangeu↔ d, i.e. θI →−θI . Hence,Z is invariant under charge conjugation, both
θq →−θq andθI →−θI . Furthermore we have proved thatZ has the RW periodicity atθI ̸= 0 [9].
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All the relations are summarized as

Z(θq,θI) = Z(±θq,∓θI) = Z(θq,θI +2π) = Z(θq +2π/3,θI). (3.1)

Meanwhile, if the pion condensation occurs, theUI3(1) symmetry is spontaneously broken
and the isospin charge is neither zero nor half-integer anymore. In this situation, QCD vacuum
doesn’t have the periodicities (3.1). We have proved that the pion condensation doesn’t take place
at imaginaryµI [9]. This can be understood intuitively. For realµI , the Bose-Einstein distribution
function has an infrared divergence atµI ≥ mπ/2. This induces the Bose-Einstein Condensation,
that is, the pion condensation. For imaginaryµI , such a divergence never happens and hence no
pion condensation occurs. As a result of this fact,Z has all the discrete symmetries (3.1).
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Figure 4: Ω/T4, nq/T3 andnI/T3 as a function ofθq andθI . Panels (a), (b) and (c) correspond toT =
175 MeV, while panels (d), (e) and (f) toT = 250 MeV.

The absence of the pion condensation at imaginaryµI is true in the PNJL model [9]. The PNJL
thermodynamic potential atµI ̸= 0 in the MFA is

Ω = −2
∫

d3p
(2π)3 ∑

f=±1

[
3ε f (p)+T ∑

λ=±1

ln detc(1+Lλ e−ε f (p)/T+iλθq)
]
+Gs(σ2 +π2)+UΦ,(3.2)

whereε± =
√

(ε(p)±µI)2 +N2, N = 2Gsπ. The pion condensateπ = ⟨q̄iγ5τ1q⟩ is an order pa-
rameter of the spontaneous breakings of theUI3(1) symmetry. When there is no pion condensation,
Ω is reduced to a simpler form

Ω = −2
∫

d3p
(2π)3

[
6ε(p)+T ∑

λ , f=±1

ln detc(1+Lλ e−ε(p)/T+iλθq+i f θI )
]
+Gsσ2 +UΦ, (3.3)

which is invariant under the extendedZ3 transformation (2.3), thereforeΩ has the RW periodicity.
The potentialΩ has also the periodicity ofθI → θI + 2π. FurthermoreΩ is invariant under the
transformation,θI → −θI , and also under the transformation,θq → −θq and L± → L∓. These
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properties guarantee that the PNJL model possesses all the symmetries in (3.1), and the model
reproduces LQCD data [7] qualitatively at imaginaryµI andµq.

Figure4 showsΩ/T4, Im[nq]/T3 and Im[nI ]/T3 as a function ofθq andθI in the cases of
T = 175 and 250 MeV. Symmetries (3.1) are seen in Fig.4. This result is consistent with LQCD
ones [7]. If the pion condensate is nonzero, symmetries (3.1) break down. Hence, the fact that
LQCD has symmetries (3.1) means that the pion condensation doesn’t occur also in LQCD. As
shown in Fig.2 (a) for θI = 0, at temperature aboveTRW = 190 MeV, there is the RW phase
transition atθq = π/3 mod 2π/3, wherenq = −dΩ/d(iTθq) is discontinuous. In Fig.4, T = 175
and 250 MeV are typical temperatures below and aboveTRW, respectively. For any temperature,
the RW periodicity is seen. BelowTRW, these quantities are smooth at anyθq andθI . In contrast,
aboveTRW, Ω andnI have cusps atθq = π/3 mod 2π/3, while nq is discontinuous there. The
discontinuity means the RW phase transition. Eventually, the transition occurs atθq = π/3 mod
2π/3 when 0≤ θI < π/2 andπ < θI ≤ 2π, and atθq = 0 mod 2π/3 whenπ/2≤ θI ≤ 3π/2 [9].
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Figure 5: Phase diagram of the deconfinement phase transition in theθI −T plane. Panels (a), (b) and (c)
correspond toθq = 0,π/6 andπ/3, respectively. The solid (dashed) line denotes the first-order (crossover)
transition. The area labeled by ’RW’ between the two dot-dashed lines represents the region where the RW
phase transition occurs.

Figure5 shows the phase diagram of the deconfinement phase transition in theθI −T plane.
NearθI = π/2 modπ, the deconfinement phase transition is first order in all panel (a)-(c). Near
θI = π modπ, the deconfinement phase transition is first order atθq = 0, but crossover atθq = π/6
andπ/3. The RW phase transition occurs in the area labeled by ’RW’ between the two dot-dashed
lines.

Quantitative comparison of the PNJL model with LQCD data [7] is made atT ≤Tc by using the
hadron resonance gas (HRG) model that can reproduce the LQCD data there. We have shown [9]
that the PNJL model reproduces the LQCD data for the oscillatory patterns. For the magnitudes,
meanwhile, the PNJL model underestimates the LQCD result. This discrepancy is understandable
as follows. BelowTc, hadronic excitations are important, but such an effect is not included in the
MFA. By adding the hadronic correction to the PNJL model, the model agrees with the LQCD [9].
The HRG model works well atT < Tc, but not atT > Tc; especially the HRG model doesn’t
reproduce the RW phase transition. In contrast, the PNJL model with the hadronic correction
works both below and aboveTc.

4. Real Isospin Chemical Potential

LQCD data are available at realµI andµq = 0 [8]. The scalar-type eight-quark interaction is
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necessary to reproduce LQCD data at imaginaryµq [2]. Figure4 (a) shows the phase diagram of the
PNJL model with the scalar-type eight-quark interaction in theµI −T plane atµq = 0. The PNJL
model with the eight-quark interaction is also consistent with the LQCD atµI ̸= 0 [10]. There is
a tricritical point (TCP) where the first-order pion-superfluidity phase transition line is connected
to the second-order phase transition. The critical points such as CEP and TCP are important as
indicators of the chiral and pion-superfluidity phase transitions at compact stars and laboratory
experiments whereµI is nonzero generally. The TCP in theµI −T plane atµq = 0 is connected to
the CEP in theµq−T plane atµI = 0 in theµq−µI −T space [10], as shown in Fig.6 (b).
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Figure 6: (a) Phase diagram in theθI −T plane atθq = 0 with the eight-quark interaction. The thick-
solid (dashed) line denotes a first-order (second-order) pion-superfluidity phase transition. The dot-dashed
(dotted) line denotes a deconfinement (chiral) crossover transition. Lattice data are taken from [8]. (b) Phase
diagram in theµI −µq−T space with the eight-quark interaction. Line ABC denotes the chiral CEP, ABD
line does the pion-superfluid TCP. The CEP and the TCP coexist on line AB. The solid (dashed) line denotes
the first (second) order transition.
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