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1. Introduction

The QCD phase diagram is essential for understanding not only natural phenomena such as
compact stars and the early universe but also laboratory experiments such as relativistic heavy-
ion collisions. Quantitative calculations of the phase diagram from the first-principle lattice QCD

(LQCD) have the sign problem at real quark chemical potentigl. (Though several approaches
have been proposed to circumvent the difficulty, these are still far from perfection.

As an approach complementary to the first-principle LQCD, we can consider effective mod-
els such as the Nambu—Jona-Lasinio (NJL) model and the Polyakov-loop extended Nambu—Jona-
Lasinio (PNJL) model. The NJL model describes the chiral symmetry breaking, but not the con-

finement mechanism. The PNJL model is constructed so as to treat both the mechanisms.
the NJL-type models, the input parameters are determingg at0. It is then highly nontrivial
whether the models predict the dynamics of QCD at fipiggroperly. This should be tested from
QCD. Fortunately, this is possible in some regions without sign problem, such as imagipary
real and imaginary isospin chemical potential)(

In this paper, we consider two-flavor QCD and show the reliability of the PNJL model by
comparing the model result with LQCD data in their regions.

2. Imaginary Quark Chemical Potential

Roberge and WeisH] found that the thermodynamic potenti€lgcp(6;), of QCD at imag-
inary chemical potentially = i6;T has a periodicityQqcp(8y) = Qocp(6q + 27k/3), showing
that Qocp(6q + 27k/3) is transformed intocp(8y) by the Zz transformation with integexk.
This means that QCD is invariant under a combination ofAReransformation and a parameter
transformatiorfy — 6+ 27k/3. We call this combination the extendg&g transformation. Thus,
Qqcp(8y) has the extende@s symmetry, and hence quantities invariant under the extefided
transformation have the RW periodici [

We reveal that the PNJL model has the RW periodi@y The two-flavor PNJL Lagrangialg]
in Euclidean spacetime is

& = qliysDy — yatig + Mo)q — Gs[(q0)? + (Aiys )] + Vo (P[A], ®*[A], T), (2.1)

whereq denotes the two-flavor quark fielahy does the current quark mass, digd= d, —iA, dvo
with the gauge field\, . In the chiral limit fny = 0), the Lagrangian density has the exad(2)r x
SU(2). x U (1)y x SU(3). symmetry. The Polyakov potentidl, [4] is a function of the Polyakov
loop ® = tre L with L = €24/ and its Hermitian conjugat®*. The PNJL thermodynamic poten-
tial Q in the mean field approximation (MFA) is

3 .
Q=4 / d b [3e(p)+T Y Indet(1+L e *P/THA%) | 4+ Go®+Us,  (22)
(2m) p=t]

whereg = \/p?+ M2, M = my — 2Gs0, ando = (qg). The thermodynamic potentiél is invariant
under the extendeds transformation,

L — e 23 gy — 64+ 2mik/3. (2.3)
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Figure 1: Phase diagram in the real and imaginagy regions by the PNJL model with the parameter

set P that reproduces the LQCD data at imaginagy The points kw and E: are the endpoints of the

RW transition and the first-order chiral transition respectively. The solid line denotes the first-order chiral
transition, the dashed (dotted) line does the crossover deconfinement (chiral) transition, and the dot-dashed
line does the RW transition. Lattice data)(are taken fromj.

Therefore Q has the RW periodicity.

At the present stage, the PNJL model is only a realistic effective model that possesses both
the extended.; symmetry and the chiral symmetn2][ This property guarantees that the phase
diagram evaluated by the PNJL model has the RW periodicity in the imagiaggion, and there-
fore makes it possible to compare the PNJL result with LQCD data quantitatively in the imaginary
g region. Actually, the PNJL model succeeds in reproducing the LQCD Bhtay[introducing
the vector-type four-quark interaction and the scalar-type eight-quark intera@ioiitije QCD
phase diagram in the reg}, region is predicted by the PNJL model with the parameteiZj¢ht
reproduces the LQCD data at imaginary, as shown in Fidll
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Figure 2: Phase diagrams of the deconfinement and the RW phase transition g th€ plane with
RRW-typeUqs [ (panel (a)) and F-typ®o [F (panel (b)). The solid (dashed) line denotes the first-order
(crossover) deconfinement transition, and the dot-dashed line does the RW transition. gppisttke
endpoint of the RW transition. Lattice data (+) are taken frgn [

The phase diagrams of the deconfinement and the RW phase transitiorbin-tiieplane by
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using the PNJL models with RRW-typéy, [[4] and F-typeUq [F] are shown in Fig2 (a) and (b),
respectively. Thus, the PNJL model with RRW-tyghe reproduces LQCD dat@] at finite 6, but
the model with F-typd&Je doesn’t. In this sense, the PNJL model with RRW-tyfag calculation
is more reliable.
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Figure 3: (a) The phase structure neagfwith RRW-typeUqs is magnified. The solid (dashed) line denotes

the first-order (crossover) deconfinement transition, and the dot-dashed line does the RW transition. Points
Erw and CP are an endpoint of the RW transition and critical endpoints, respectively.dgpendence of

the chiral and Polyakov-loop susceptibilitigg; and xo, at the point CP.

The phase diagram for RRW-tyjuk, near By is magnified in Figl3 (a). The RW endpoint
is first order for RRW-typeJe, but it's second order for F-typde [9). Thus, the order of the
deconfinement phase transition near the RW endpoint strongly depehidstaken. The result of
the PNJL calculation with RRW-typdy is consistent with the LQCD dat@&][where the order of
the RW phase transition akly is first order for small quark mass. Poingkis the triple point
where the three first-order lines meet. Thus, there are two critical endpoints (CP) for each triple
point ; CP is a point where the crossover and the first order lines meet. Buyrshows the chiral
and the Polyakov loop susceptibilitiegs and xo, as a function ol near CP. The susceptibilities
are divergent at CP. Hence, the chiral and deconfinement transitions are second order at CP.

3. Imaginary Isospin Chemical Potential

LQCD has no sign problem at both real and imaginary Recently, LQCD data were mea-
sured there and also in the case where ppthind g are imaginary(f].

In the chiral limit, QCD has the chir&®U (2) x SUs(2) symmetry whery, = 0. However,
at 1y # 0 this symmetry is reduced tdy,(1) x Uaj,(1), whereU,,(1) is the isospin subgroup and
Uai;(1) is the axial isospin subgroup. In the camg= my # 0, only theU,,(1) symmetry survives.
When QCD vacuum keeps thg (1) andUy, (1) symmetries, the baryon charBe=V (B) is either
zero or integer and the isospin charge=V(i3) is also either zero or half-integer, whelfe=
ayaq, Iz = Qyalaq andV is the volume. In the partition functiod, the baryon- and the isospin-
charge operator appear through the form&xgi6, f3+i6qé)] wherepq = iT 8. ThereforeZ
has the periodicity (6q, 6,) = Z(6y, 6 +2m). In the isospin symmetric limity, = mg, Z is invariant
under the interchange« d, i.e. 6 — —6,. HenceZ is invariant under charge conjugation, both
8y — —6q and6 — —6,. Furthermore we have proved ttiahas the RW periodicity & # 0 [9).
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All the relations are summarized as

Meanwhile, if the pion condensation occurs, the(1) symmetry is spontaneously broken
and the isospin charge is neither zero nor half-integer anymore. In this situation, QCD vacuum
doesn'’t have the periodicitieB.{). We have proved that the pion condensation doesn’t take place
at imaginaryy, [@. This can be understood intuitively. For rgal the Bose-Einstein distribution
function has an infrared divergence(at> m;/2. This induces the Bose-Einstein Condensation,
that is, the pion condensation. For imagingsy such a divergence never happens and hence no
pion condensation occurs. As a result of this fZdhas all the discrete symmetri¢g]).
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Figure 4: Q/T#, nq/T2 andn; /T3 as a function o6, and 6. Panels (a), (b) and (c) correspondTic=
175 MeV, while panels (d), (e) and (f) b= 250 MeV.

The absence of the pion condensation at imagipaiy true in the PNJL modeB]. The PNJL
thermodynamic potential gt #~ 0 in the MFA is

_ d*p A o1 (p)/T+iAB 2
Q_—z/wf_zﬂ[%f(p)ﬂgﬂln det(1+L e )| +Go(0%+ 1) + Uo, (3.2)

whereey. = /(g(p) = )2+ N2, N = 2Gs7t. The pion condensate = (qiysT10) is an order pa-
rameter of the spontaneous breakings oldh€l) symmetry. When there is no pion condensation,
Q is reduced to a simpler form

d°p A o—€(P)/THAOg+if 6 2
e q
Q 2/( )3 [65(p)+ | N fz lIn det;(l—i—L e )} 4+ Gs0“ +Ug, (3.3)

which is invariant under the extend&g transformationlZ.3), thereforeQ has the RW periodicity.
The potentialQ has also the periodicity ofy — 6 + 2. FurthermoreQ is invariant under the
transformation,6, — —6,, and also under the transformatiofy, — —64 and L* — LF. These
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properties guarantee that the PNJL model possesses all the symmeted),imrfd the model
reproduces LQCD dat&] qualitatively at imaginaryy and .

Figured showsQ/T#, Im[ng] /T2 and Inin;]/T3 as a function ofg; and 6, in the cases of
T = 175 and 250 MeV. SymmetrieB.{) are seen in Figdl This result is consistent with LQCD
ones[. If the pion condensate is nonzero, symmetrigg)(break down. Hence, the fact that
LQCD has symmetrie$3(]) means that the pion condensation doesn’t occur also in LQCD. As
shown in Fig[2 (a) for 6, = 0, at temperature abovEyw = 190 MeV, there is the RW phase
transition atfy = 11/3 mod 21/3, whereny = —dQ/d(iT 8;) is discontinuous. In Figd, T = 175
and 250 MeV are typical temperatures below and aligyg respectively. For any temperature,
the RW periodicity is seen. BeloWsyw, these quantities are smooth at sayand§,. In contrast,
aboveTgw, Q andn have cusps afy = 11/3 mod 21/3, while ng is discontinuous there. The
discontinuity means the RW phase transition. Eventually, the transition occégs=atr/3 mod
2m/3 when 0< 6 < /2 andrr < 6, < 2, and atf; = 0 mod 21/3 whenrt/2 < 6, < 3m/2 [9].
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Figure 5: Phase diagram of the deconfinement phase transition if thd plane. Panels (a), (b) and (c)
correspond td, = 0, 11/6 andrt/3, respectively. The solid (dashed) line denotes the first-order (crossover)
transition. The area labeled by 'RW’ between the two dot-dashed lines represents the region where the RW
phase transition occurs.

Figure shows the phase diagram of the deconfinement phase transition én-the plane.

Near 8 = 11/2 mod 1, the deconfinement phase transition is first order in all panel (a)-(c). Near
6 = mmod 1, the deconfinement phase transition is first ordéat 0, but crossover &y = 11/6
andrt/3. The RW phase transition occurs in the area labeled by 'RW’ between the two dot-dashed
lines.

Quantitative comparison of the PNJL model with LQCD d&jag made afl < T; by using the
hadron resonance gas (HRG) model that can reproduce the LQCD data there. We hav@shown |
that the PNJL model reproduces the LQCD data for the oscillatory patterns. For the magnitudes,
meanwhile, the PNJL model underestimates the LQCD result. This discrepancy is understandable
as follows. BelowT, hadronic excitations are important, but such an effect is not included in the
MFA. By adding the hadronic correction to the PNJL model, the model agrees with the LB)CD [
The HRG model works well al < T, but not atT > T¢; especially the HRG model doesn't
reproduce the RW phase transition. In contrast, the PNJL model with the hadronic correction
works both below and abovk.

4. Real Isospin Chemical Potential

LQCD data are available at rea] and g =0 [8]. The scalar-type eight-quark interaction is
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necessary to reproduce LQCD data at imaginarf2]. Figuredl(a) shows the phase diagram of the
PNJL model with the scalar-type eight-quark interaction ingthe T plane atug = 0. The PNJL

model with the eight-quark interaction is also consistent with the LQC[ & 0 [1J]. There is

a tricritical point (TCP) where the first-order pion-superfluidity phase transition line is connected
to the second-order phase transition. The critical points such as CEP and TCP are important as
indicators of the chiral and pion-superfluidity phase transitions at compact stars and laboratory
experiments wherg, is nonzero generally. The TCP in tie— T plane atug = 0 is connected to

the CEP in thguq — T plane aty, = 0 in thepq — i — T spacelld], as shown in Fida (b).
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Figure 6: (a) Phase diagram in th& — T plane at6; = O with the eight-quark interaction. The thick-

solid (dashed) line denotes a first-order (second-order) pion-superfluidity phase transition. The dot-dashed
(dotted) line denotes a deconfinement (chiral) crossover transition. Lattice data are takdgj.f(bjrHhase
diagram in theu; — uq — T space with the eight-quark interaction. Line ABC denotes the chiral CEP, ABD
line does the pion-superfluid TCP. The CEP and the TCP coexist on line AB. The solid (dashed) line denotes
the first (second) order transition.
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