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1. Introduction

First principle predictions for the QCD phase diagram wdugdf great value as a benchmark
for the international experimental heavy ion program. Imgple, we know precisely how to
proceed: start from the grand canonical partition fungtion

Zii1= /dAdelz(DJr LYo+ m) e S (1.1)

and study the baryon number as a function of the chemicahpatgu, and temperature for quark
massesn (for notational simplicity we consider the two flavor thedamthese proceedings). As the
phase transitions occur in the non perturbative domainnaisiral to turn to lattice QCD. While

we know exactly how to include the chemical potential on Higde [1, 2], in practice, our studies
are limited by the fact that the fermion determinant at nomaelues of the chemical potential
becomes complex

de?(D + uyo+ m) = |det(D + uyp + m)|2e?°. (1.2)

This sign problemnvalidates the standard Monte Carlo method which is at #redf lattice QCD.
The sign problem is not only hard because the average of theeplactor is exponentially small
[3], it is also challenging because much of our intuition f&batistical systems leads to wrong
conclusions at non zem. Most prominently, a probabilistic argument leads one tochade that
the chiral condensate is continuous as a function of thekgoeass atm = O for any non zero
value of u [4]. Rather, as the solution [5] of this Silver Blaze problatmows, it is imperative
that we consider distribution functions that take complatugs. Only through extreme complex
oscillations of the eigenvalue density of the Dirac operadat possible to understand how the
discontinuity of the chiral condensate remains non zertvéngresence of the chemical potential.
Here we will show [6] that the extreme complex oscillatioake place also in the chiral condensate
and the baryon number and that they are essential to get trectphysical results.

For simplicity we will here focus on the baryon number, whinta single gauge field config-
uration is given by

n= %Iogde(DJruyoer). (1.3)

Our goal is to determine the distributigd(n—n')) of the baryon number over the gauge fields. We
will show that this distribution takes complex values anak tithe extreme oscillations are essential
to obtain the correct average baryon number

(n) = /drf 0 (5(n—r)). (1.4)

This direct insight into the sign problem also allow us tor@dd how complex Langevin works in
this case.

In order to understand better the distributioh(n— n')) of the baryon number operator over
the gauge fields, let us first understand its first two mométasthe first moment there is no source
of confusion: The average quark number is the first moment

11 d

- —Z = (n). 1.5
37, du 2 () (1.5)
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However, the second derivative with respecpito

11 d2

1/d
Zmd—ﬂz 1+1:<n2>+§<<_n>>7 (1.6)

du
is notthe second moment of the distributiod(n—n')). Rather, the average of the squarenafn
be written as

ii

2\ _

, 1.7)
Hu=Hd=H

VARE]

NI~

where we distinguished the chemical potentials for the taeofls and differentiated with respect
to each one before setting them equal.
When we express the traces in terms of the eigenvalyesf yo(D + m)

11

= 1.8
27111 du 1 = <Za<+u> (1.8)
11 o2 11 1o 1
47y e T TA+UZ A 24 (Bt )2

<n2>:< A—lkua+u> <[sz+u}>

it becomes obvious that (1.6) imotthe average of a square and in particular ihet the second
moment of the distribution af over the gauge fields. The distributidd(n—n')) is nevertheless
of great interest since it gives direct insights in the sigobgem.

As a final point before we turn to the results, note that thelqnamber takes complex values

U R R
n(u) —<TrD+WO+m> =—n(—H). (1.9)

Hence, the distributioid(n—n')) is in the complexn plane

Pa(X,y) = (3 (x—Rein]) & (y—Im[n))), (1.10)

and the average baryon number is given by the integrgkefiy) weighted by the distribution
Pa(X y)dxdy.

2. Thedistribution of nfrom Chiral Perturbation Theory

Despite the fact that pions have zero baryon charge thekldisom of the baryon number
over the gauge fields is non trivial when computed within @hRerturbation Theory. Certainly in
Chiral Perturbation Theory we have that

1 d 1 d?
- d Zi1= < > =0 and — Z1,1=0, (2.1)
Zyq dy

1
2Z Zi11 dﬂz
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Figure 1: Scatter plot of the spectrum of a Random Matrix Dirac opertou = my/2; left: the eigenval-
ues ofD + Uy + mright: the eigenvalues df yo(D +m) + u). In both cases the support of the spectrum
has reached the origin indicated by the red point. Beyorglghint, ie. fory > m;/2 the distribution of
the chiral condensate and the baryon has power law tailsinfAas phenomenon is expected to happen for
lattice QCD with Wilson fermions in the Aoki phase [8].)

but the average of the squarerois non zero

2

(n?) Go(H1, H2) £0, 2.2)

~ dpdp i=po=u
since the 1-loop free energy is

meT2 2 Ko(T) My — H2
Go(H1, 2) =V 77;2 n; nzT cosﬁfn). (2.3)

So(d(n—n')) must necessarily be non trivial in Chiral Perturbation Tiyeo
In order to compute the full distributioR,(x,y) it is necessary to evaluate all moments

(Ren]“Im[n]’) (2.4)

in Chiral Perturbation Theory. The details are given in [6§lanvolve an interesting combinatorial
use of the replica trick [7]. For the computation it is ess#rib specify whether the chemical
potential is larger or smaller tham,/2, since in the replicated generating functions additional
condensates appear at this scale. Also from the perspettikie eigenvalues of the Dirac operator
it is clear that the casg < m;;/2 must be very different from the one with> m;/2, see figure 1.

We first discuss the distribution offor 4 < my;/2. To one-loop order in Chiral Perturbation
Theory the distribution factorizes [6]

Pn(X, Y) = PRe{n] (X) le[n] (Y) ) (2.5)
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Figure 2: The distribution of the baryon number over the gauge fieldhégrand canonical ensemble.
For u < my/2 the distribution factorizes into the distribution of theat part (left figure) and the imaginary
part (right figure). The distribution of the imaginary paakes complex values, shown is the real part. Note
the difference in the scales on the vertical axis. The amgditof the distribution of the imaginary part of
grows exponentially with the volume.

where the two factors take simple Gaussian forms
1
Pren (X) = Te—(x—vl)z/(xfﬁxﬁd) (2.6)
(X5 + Xua)

e ——C L) (2.7)

T(Xba — X5a)
Note in particular thaPy,(y) takes complex values. It is quite natural that the sign bl
manifest it self in the distribution of the imaginary partrog§ince

d d . d
n= logde{D + uy+ m) = —log|detD + puyo+ m)|+|@6. (2.8)

du du

In the above expression for the distributionrofve have made use of the notation

d
v = ——AGo(H1, —H) (2.9)
du p=H
B d?
Xud = AGo(H1, H2)
) dllldllz Hi=H2=H
2
XLIJd = d dd AGO(_“L“Z) )
HiGH Hi=Hz2=H
where the free energy difference is (note tg+ x2, > 0 andx/y — xB, > 0)
maT? & Kp(Tah) M1 — o
AGo([Jl,[Jz) =V ) nzl 2 |:COSf'( T n) - l:| . (2.10)

Since all of the above quantities are extensive the amgliofd,, (y) grows exponentially with
the volume, the width grows like/V, while the period of the oscillations are of ordé?. For a
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plot of the distribution see figure 2. The extreme oscillasiof P,y (y) are essential in order to
obtain zero expectation value of the quark number in ChiestuPbation Theory

(n) = /dxdy(x+iy)Pn(x,y) (2.11)

= /dX XFﬂge{n](X)+|/dnym[n](y)

=V +iiyy =0

The detailed cancellation between the contribution froenréal part and the imaginary part is only
possible if the phase of the fermion the determinant is attealfor properly. Similar cancellations
also take part for the higher moments of the baryon numbemedisas for the moments of the chiral
condensate, see [6] for details.

3. Complex Langevin

One use of the results for the distribution of the baryon nenibto illustrate how the complex
Langevin method can deal with sign problems in simple mod€learly the distribution of the
imaginary part of the baryon number over the gauge fieldse€tallenging part. Therefore, let us
ask if complex Langevin is able to do the simple one dimeraioriegral

[ 4YY R ) (3.)

that is, to measure the contribution to the average baryombeun from the imaginary part of.
To this end we define the complex Langevin actionyfer Im[n| as

S= —10g[Pimm (¥)] = —(iy + )%/ (Xba — Xou)- (3.2)

The next step is to complexify Ifn] asy = a+ ib and write down the flow equations farandb

2
ani1 = %—8%+ﬁnn (3.3)
Xud — Xud

i1 = b e Xba = XGu
Note that the flow equations decouple. The equatioraferthat of a Gaussian for which complex
Langevin works perfectly. That df simply shiftsy by v in the imaginary direction. Since there
is no noise in the imaginary direction, the complex Langewgthod effectively shifts the contour
of they-integral by a term of ordev in the imaginary direction. After the shift, a simple intagr
over a Gaussian without oscillations is left and the complargevin method has no problem in
evaluating this. Clearly the shift of the contour is the ordgsonable thing to do in this case, the
strength of the complex Langevin method is that it can malkeshift automatically. A similar
example was worked out in [9] and [10].

For u > my/2 the chemical potential enters the spectral suppog@ + m) and the distri-
bution of the baryon number develops power law tails [6]. &f&weless, complex Langevin is also
able to deal with the sign problem for one dimensional QCL [d this region.
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4. Summary

The interplay between lattice QCD and analytical studieQGD is essential to understand
QCD at nonzero chemical potential. Due to the sign probldrm, standard methods of lattice
QCD only have a limited range of applicability. In order tady dense strongly interacting matter
from first principles new numerical methods must be inveraed put to use. To understand how
such methods can be designed it is essential to understanthbasign problem affects physical
observables such as the baryon number and the chiral cartdens

Here we have derived the distribution of the baryon number tive gauge fields from Chiral
Perturbation Theory. We have shown that the distributidsacomplex values and is strongly
oscillating. These oscillations were shown to be centrahtodetailed cancellations which take
place when forming the average baryon number. The distoibsitalso give detailed information
on the overlap problem as will be discussed in [12]. Here weehssed the distribution of the
baryon number to show how the complex Langevin method cahwii#ia sign problems. An
important point to take away from this is that the complex gevin method works equally well
independent of the volume and hence independently of thagttn of the sign problem. Similarly,
in the well known cases [13] where the complex Langevin nefads it does so independently of
the volume.

It is also possible to compute the distribution of the baryamberover the phase of the
fermion determinantvithin Chiral Perturbation theory [14]. Also in this caseetbomplex and
oscillating nature of the distribution is essential in artle obtain the correct physics at nonzero
chemical potential. That calculation also directly demiatss that all phases of the fermion deter-
minant are important.
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