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Hunting the static energy renormalon
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We employ Numerical Stochastic Perturbation Theory (NSPT) together with twisted boundary
conditions (TBC) to search for the leading renormalon in the perturbative expansion of the static
energy. This renormalon is expected to emerge four times faster than the one for the gluon conden-
sate in the plaquette. We extract the static energy from Polyakov loop calculations up to 12 loops
and present preliminary results, indicating a significant step towards confirming the theoretical
expectation.
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1. Motivation

It is known since long that QCD perturbation theory is divergent: at best, the perturbative
coefficients form an asymptotic series. The coefficients kn of a generic expansion,

K = ∑
n

knαn , (1.1)

will diverge at least like an
dn!, with a constant ad (see ref. [1] for a comprehensive review). This

pattern of factorial growth can be inferred from combinatorial studies of the contributing Feynman
diagrams and is related to the position of the first renormalon pole in the complex Borel plane.
Successive contributions knαn decrease for small orders n down to a minimum at n0 ∼ 1/(|ad |α).
Higher-order contributions should be neglected and introduce an ambiguity of the order of this
minimum term, kn0αn0 ∼ exp[−1/(|ad |α)]. Integrating the one-loop QCD β -function from a mo-
mentum scale q down to a cut-off parameter Λ � q one obtains,

(
Λ
q

)d

= exp
(
− 1
|ad |α

)
, where |ad | =

2β0

d
. (1.2)

The above similarity of expressions is not accidental. Within the operator product expansion
(OPE), observables R can be factorized into short-distance Wilson coefficients Ci(q,µ) and non-
perturbative matrix elements 〈Oi(µ,Λ)〉 of dimension i:

R(q,Λ) = C0(q,µ)〈O0(µ,Λ)〉+Cd(q,µ)〈Od(µ,Λ)〉
(

Λ
q

)d

+ · · · . (1.3)

µ denotes the matching scale, q is a perturbative and Λ a low momentum scale so that q � µ � Λ.
For the plaquette, 〈O0〉= 1 and the next higher non-vanishing operator is the dimension d = 4 gluon
condensate. In this case, the perturbative expansion of C0 cannot be more accurate than (Λ/q)4

which is exactly of the size of kn0αn0 , see eq. (1.2): the so-called leading infrared renormalon of
this expansion cancels the ultraviolet ambiguity of the next order non-perturbative matrix element
so that the physical observable R is well defined.

Here we investigate the renormalon of the perturbative expansion of the static energy. In this
case d = 1 which means that we expect this expansion to start diverging at an order n0 that amounts
to about one fourth of that for the plaquette. Moreover, the ratios of two subsequent coefficients
should asymptotically be larger by this same factor since the position of the first singularity in the
Borel plane is four times closer to the origin (u = d/2 = 1/2 instead of u = 2). QCD renormalon
studies are particularly interesting because more and more diagrammatic three-loop [2] (and even
four-loop [3]) calculations become available so that an extrapolation of these existing results to
even higher orders may be feasible if the Borel structure is understood.

High-order perturbative expansions in lattice regularisation were made possible by numerical
stochastic perturbation theory (NSPT) [4, 5], and the renormalon study of the plaquette was its
first application. Below we will describe the basic elements of NSPT, introduce twisted boundary
conditions that we employ and present first results on the static energy renormalon.
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2. Numerical stochastic perturbation theory

NSPT is based on stochastic quantization [6]. We first explain the concept for a scalar field φ(x)
and an action S[φ ]. One introduces an additional, totally fictitious stochastic time t. The evolution
of the field φ in stochastic time is dictated by a Langevin equation,

∂φ(x, t)
∂ t

= −∂S[φ ]
∂φ

+η(x, t) , (2.1)

where η(x, t) is a Gaussian noise. In order to calculate a generic observable R, stochastic quan-
tization postulates the equivalence of ensemble time averages, in the limit of infinite stochastic
time,

Z−1
∫

[Dφ ]R[φ(x)]e−S[φ(x)] = lim
t→∞

1
t

∫ t

0
dt ′

〈
R[φ(x, t ′)]

〉
η . (2.2)

In lattice QCD, the Langevin equation must be formulated such that the gauge links Uµ evolve
within the group. This can be achieved by defining [7],

∂tUµ(n, t) = −itA
(

∇n, µ , AS[U ]+ηA
µ (n, t)

)
Uµ(n, t) , (2.3)

where tA are the generators of the su(3) algebra, ∇n, µ, A is a left Lie derivative and ηA
µ (n, t) con-

stitute the components of the Gaussian noise. Perturbation theory comes into play when rewriting
each link U as a series:

U = 1+β− 1
2 U (1) +β−1U (2) + . . . , β−1 =

g2
0

6
=

2π α
3

. (2.4)

Inserting this series into the Langevin equation eq. (2.3), one obtains a hierarchical system of differ-
ential equations where a given order only depends on the preceeding lower orders. The perturbative
series can be truncated at any desired order m. NSPT is the numerical implementation of this con-
cept, with a discretized stochastic time t within eq. (2.3). This necessitates simulations at different
time steps ∆ t, with a subsequent extrapolation towards ∆ t = 0. Here we employ a second-order
integrator [8]. We point out that the computer time naively scales like m2, which clearly favors
NSPT over diagrammatic approaches in the region of large m.

3. Twisted boundary conditions

So far in NSPT only periodic boundary conditions (PBC) have been employed. In this case
zero modes need to be subtracted, for instance after each Langevin update. However, one can
equally well impose twisted boundary conditions (TBC) [9 – 12]. We assume a lattice of dimen-
sion L4. The TBC are defined by constant twist matrices Ων ∈ SU(3):

Uµ(x+Lν̂) = ΩνUµ(x)Ω†
ν . (3.1)

The twist matrices satisfy the relations,

ΩµΩν = ηΩνΩµ , where η = exp
(

2πik
3

)
, k = 1,2 . (3.2)
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To eliminate zero modes at least two lattice directions need to be “twisted”. In practice, one can ei-
ther explicitely implement the twist eq. (3.1) or multiply plaquettes in the corners of twisted planes
with suitable phase factors η ,η∗, otherwise maintaining PBC. We opted for the first method. The
effect of TBC is twofold: first, TBC automatically eliminate the undesired zero modes. Second,
they drastically reduce finite lattice size effects: for a given number of L4 lattice points, TBC restrict
the possible gluon momenta pν to

pν =


2π
3L nν , ν = twisted direction ,

2π
L nν , ν = periodic direction .

(3.3)

To put it differently, the momenta pν are quantized as if they lived on a three times bigger lattice
for each twisted direction.
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Figure 1: Ratios rv(n) for the static energy on a 84 lattice, using TBC in three directions (blue squares) and
PBC (magenta circles), respectively.

4. Renormalon observables

So far the only observables that have been checked for a renormalon within NSPT are the
plaquette 〈U�〉 and small Wilson loops [13 – 17]. The factorial growth of the coefficients wn in the
expansion,

〈U�〉 =
∞

∑
n=0

wnαn+1 , (4.1)

translates into the leading-order expectation (see e.g. ref. [1] and eq. (1.2)),

LOW = lim
n→∞

rw(n) := lim
n→∞

|wn|
n|wn−1|

= |a4| =
11
8π

. (4.2)
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The static energy Vself which we focus on can be extracted from gauge-invariant Polyakov loop
expectation values 〈P〉 wrapping around the T direction of an L3 ·T lattice:

Vself = lim
T→∞

(
− 1

T
ln〈P〉

)
. (4.3)

The self-energy of a static quark is linearly UV-divergent. Hence, the perturbative coefficients vn

of the expansion of Vself are expected to be sensitive to a leading UV renormalon at u = 1/2: the
leading-order expectation reads [18 – 20],

LOV = lim
n→∞

rv(n) = lim
n→∞

|vn|
n|vn−1|

=
11
2π

= 4LOW, (4.4)

5. Preliminary results

Ref. [21] triggered our interest in combining the static energy calculation with TBC. In this
reference the static energy was calculated for various lattice sizes at first and second order. TBC in
three spatial directions (TBC3) and even more so TBC in two spatial directions (TBC2) were found
to approach the infinite-volume values much faster than PBC. We ran simulations up to O(α12) and
confirm these findings at higher orders. In fig. 1 we employ both TBC3 and PBC to calculate the
static energy on an 84 lattice volume, resulting in two sets of ratios rv(n), see eq. (4.4). For large n,
the TBC3 ratios lie significantly closer to LOV than the PBC ratios.
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Figure 2: Ratios rv(n) for the static energy from lattice volumes 64 (green sqares), 63 ·8 (blue circles) and
63 · 12 (red triangles). For the latter two lattice volumes also the plaquette ratios rw(n) are shown (dashed-
dotted lines).

We kept the spatial volume fixed to L3 = 63 to test the viability of eq. (4.3) at finite T = 6,8,12.
Fig. 2 illustrates that the ratio curve drops significantly when increasing T from T = 6 to T = 8.

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
2
1

Hunting the static energy renormalon Clemens Bauer

Obviously, T = 6 does not yet probe the large-T limit. In contrast, the T = 12 ratios agree within
errors with the T = 8 data, indicating the onset of convergence towards the static energy and its
renormalon. Fig. 2 also includes the plaquette ratios for T = 8 and T = 12 and these practically
coincide. This milder volume dependence for this more localized quantity seems very plausible.
We point out the clear separation between plaquette and static energy ratios. Since the renormalon
dominance of Vself only starts around the order n ≈ 8, we would not expect the plaquette ratios to
saturate at their asymptotic value for n < 30.

We also implemented stout smearing for the temporal links (once, with smearing parameter
ρ = 1/6) and calculated eq. (4.3) in the adjoint representation. The outcome is presented in fig. 3
for the TBC2 simulation on the 63 · 12 volume. We find that, as far as a potential renormalon
is concerned, smearing only affects low (n = 1,2) perturbative orders, while higher-order ratios
collapse onto the unsmeared values. Similarly, the change in representation makes no difference
regarding the renormalon position. The adjoint coefficients at large orders are also interesting in
view of Casimir scaling violations [2, 22].
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Figure 3: Ratios rv(n) on a 63 · 12 lattice. Again we plot the static energy, with (green, solid) and without
stout smearing (red,solid). In addition, the static energy in the adjoint representation is shown with (black,
dotted) and without smearing (blue, dashed).

6. Summary

The perturbative static energy is expected to sense a leading renormalon emerging four times
faster than its plaquette counterpart. In an exploratory study we have calculated the static energy
from Polyakov loops in NSPT up to O(α12) on small lattice volumes, where the use of TBC has
proven to drastically reduce finite-size effects. Given the lattice sizes we used and the fact that the-
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oretical predictions are within range, we are confident that our ongoing large-volume simulations
will shed more light on the static energy renormalon.
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