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We present perturbative and non-perturbative results on the renormalization constants of the local

and one-derivative vector and axial vector operators. Non-perturbative results are obtained using

the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the

tree-level Symanzik improved gluon action for pion masses in the range of about 450-260 MeV

and at there values of the lattice spacing, namely 0.055 fm, 0.070 fm and 0.089 fm. Subtraction

of O(a2) terms is carried out by performing the perturbative evaluation of these operators at 1-

loop and up toO(a2). The renormalization conditions are defined in the RI′-MOM scheme, for

both perturbative and non-perturbative results. The Z-factors, obtained for different values of the

renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the

lattice spacing. In addition, they are translated toMSat 2 GeV using 3-loop perturbative results

for the conversion factors.
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1. Introduction

Simulations in lattice QCD have advanced remarkably in the past couple of years reaching the
physical pion mass. The theoretical and algorithmic improvements, combined withthe tremendous
increase in computational power, have madeab initio calculations of key observables on hadron
structure in the chiral regime feasible enabling comparison with experiment. Form factors and
generalized parton distribution functions (GPDs) can be obtained from thegeneralized form factors
in certain limiting cases. GPDs provide detailed information on the internal structure of hadrons
in terms of both the longitudinal momentum fraction and the total momentum transfer squared.
Beyond the information that the form factors yield, such as size, magnetization and shape, GPDs
encode additional information, relevant for experimental investigations, such as the decomposition
of the total hadron spin into angular momentum and spin carried by quarks and gluons. GPDs
are single particle matrix elements of the light-cone operator [1, 2], which canbe expanded in

terms of local twist-two operatorsO f ,{µ1µ2···µn}
Γ = ψ f Γ{µ1i

↔
D µ2 · · · i

↔
D µn}ψ f . Lattice QCD allows

us to extract hadron matrix elements for the twist-2 operators, which can be expressed in terms of
generalized form factors.

In order to compare hadron matrix elements of these local operators to experiment one needs
to renormalize them. The aim of this paper is to calculate non-perturbatively therenormalization
factors of the above twist-two fermion operators within the twisted mass formulation. We show
that, although the lattice spacings considered in this work are smaller than 1 fm,O(a2) terms are
non-negligible and introduce significantly larger uncairtainties than statisticalerrors. We therefore
compute theO(a2) terms perturbatively and subtract them from the non-perturbative results. This
subtraction suppresses lattice artifacts considerably depending on the operator under study and
leads to a more accurate determination of the renormalization constants [3, 4].

2. Formulation

For the gauge fields we use the tree-level Symanzik improved gauge action [5], which includes
besides the plaquette term also rectangular(1× 2) Wilson loops. The fermionic action for two
degenerate flavors of quarks in twisted mass QCD is given by

SF = a4∑
x

χ(x)
(

DW[U ]+m0 + iµ0γ5τ3)χ(x) (2.1)

with τ3 the Pauli matrix,µ0 the bare twisted mass andDW the massless Wilson-Dirac operator.
Maximally twisted Wilson quarks are obtained by setting the untwisted bare quarkmassm0 to
its critical valuemcr, while the twisted quark mass parameterµ0 is kept non-vanishing in order
to give the light quarks their mass. In Eq. (2.1) the quark fieldsχ are in the so-called “twisted
basis”. The “physical basis” is obtained for maximal twist by the simple transformationsψ(x) =

exp
(

iπ
4 γ5τ3

)

χ(x), ψ(x) = χ(x)exp
(

iπ
4 γ5τ3

)

.

Here we consider only the vector and axial twist-two operators up to one-derivative,ZV , ZA ,
ZDV , ZDA (symmetrized over two Lorentz indices and traceless), which are given in the twisted
basis as follows:
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Oa
V = χ̄γµ τaχ =















ψ̄γ5γµ τ2ψ a = 1

−ψ̄γ5γµ τ1ψ a = 2

ψ̄γµ τ3ψ a = 3

Oa
A = χ̄γ5γµ τaχ =















ψ̄γµ τ2ψ a = 1

−ψ̄γµ τ1ψ a = 2

ψ̄γ5γµ τ3ψ a = 3

O
{µ ν}a
DV = χγ{µ

←→
D ν}τaχ =















ψγ5γ{µ
←→
D ν}τ2ψ a = 1

−ψγ5γ{µ
←→
D ν}τ1ψ a = 2

ψγ{µ
←→
D ν}τ3ψ a = 3

O
{µ ν}a
DA = χγ5γ{µ

←→
D ν}τaχ =















ψγ{µ
←→
D ν}τ2ψ a = 1

−ψγ{µ
←→
D ν}τ1ψ a = 2

ψγ5γ{µ
←→
D ν}τ3ψ a = 3

(2.2)

In a massless renormalization scheme the renormalization constants are defined in the chiral limit,
where isospin symmetry is exact. Hence, the same value forZ is obtained independently of the
value of the isospin indexa and therefore we drop thea index from here on. However, one must
note that, for instance, the physicalψγ{µ

←→
D ν}τ1ψ is renormalized withZDA , while ψγ{µ

←→
D ν}τ3ψ

requires theZDV , which differ from each other even in the chiral limit. The one-derivativeop-
erators fall into different irreducible representations of the hypercubic group, depending on the
choice of indices. Hence, we distinguish betweenODV1 (ODA1) = ODV (ODA) with µ = ν and
ODV2 (ODA2) = ODV (ODA) with µ 6= ν .

2.1 Renormalization Condition

The renormalization constants are computed both perturbatively and non-perturbatively in
the RI′-MOM scheme at various renormalization scales. We translate them to theMS-scheme
at (2 GeV)2 using a conversion factor computed in perturbation theory toO(g6) as described in
Section 3. The Z-factors are determined by imposing the following conditions:

Zq =
1
12

Tr

[

−i ∑ρ γρ pρ

p2 (SL(p))−1
]

∣

∣

∣

p2=µ2
, Z−1

q Zµν
O

1
12

Tr
[

(−i Õ{µ pν})
−1 ΓL

µν(p)
]

∣

∣

∣

p2=µ2
= 1, (2.3)

whereµ is the renormalization scale,SL andΓL correspond to the perturbative or non-perturbative
results andÕ{µ pν} is the tree-level expression of the operator under study. The trace is taken over
spin and color indices, and the conditions are imposed in the massless theory.

2.2 Perturbative procedure

Our calculation for the Z-factors is performed in 1-loop perturbation theory to O(a2). The
ordera2-terms can be subtracted from non-perturbative estimates, and they can eliminate possible
large lattice artifacts. There are many difficulties when extracting powers ofthe lattice spacing
from our expressions, since there appear singularities encountered at O(a2), that persist even up to
6 dimensions (integral convergence in 7-d), making their extraction more delicate. In addition to
that, there appear Lorentz non-invariant contributions inO(a2)-terms, such as∑µ p4

µ/p2, wherep
is the external momentum; as a consequence, the Z-factors also depend onsuch terms.

For all our perturbative results we employ a Wilson-type fermion action (Wilson/clover/twisted
mass), with non-zero bare mass,m. For the renormalization of the fermion field and the local bi-
linears we also have a finite twisted mass parameter,µ0, so we can explore the mass dependence.
For gluons we use Symanzik improved actions (Plaquette, Tree-level Symanzik, Iwasaki, TILW,
DBW2) [6]. The expressions for the matrix elements and the Z-factors aregiven in a general co-
variant gauge, and their dependence on the coupling constant, the external momentum, the masses
and the clover parametercSW is shown explicitly. The Feynman diagrams involved in the compu-
tation of the various Z-factors are illustrated in Fig. 1. Here we do not showany expressions for the
matrix elements of the Green’s functions, since they are far too lengthy. As an example we show
theO(a2) terms that can improve the non-perturbative estimate ofZq once they are subtracted. For
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21a 1b

3a 3b 3c 3d

Figure 1: One-loop diagrams contributing to the correction of the amputated Green’s functions of the propa-
gator (1a, 1b), local bilinears (2) and one-derivative operators (3a-3d). A wavy (solid) line represents gluons
(fermions). A cross denotes an insertion of the operator under study.

the special choices:cSW = 0, r = 1 (Wilson parameter),λ = 0 (Landau gauge),m0 = 0, µ0 = 0,
and for tree-level Symanzik gluons,Zq can be corrected toO(a2) as follows:

Zimpr
q = Znon−pert

q −
a2g2CF

16π2

[

µ2(1.1472−
73
360

ln(a2µ2)
)

+
∑ρ µ4

ρ

µ2

(

2.1065−
157
180

ln(a2µ2)
)

]

(2.4)

Its most general expression is far too lengthy to be included in paper form;it is provided, along
with the rest of our results for the Z-factors, in electronic form in Ref. [4].

2.3 Non-perturbative calculation

For each operator we define a bare vertex function given by

G(p) =
a12

V ∑
x,y,z,z′

e−ip(x−y)〈u(x)u(z)J (z,z′)d(z′)d(y)〉 , (2.5)

where p is a momentum allowed by the boundary conditions,V is the lattice volume, and the
gauge average is performed over gauge-fixed configurations. The form of J (z,z′) depends on
the operator under study, for exampleJ (z,z′)=δz,z′γµ would correspond to the local vector cur-
rent. In the literature there are two main approaches that have been employed for the evaluation of
Eq. (2.5). The first approach relies on translation invariance to shift thecoordinates of the correla-
tors in Eq. (2.5) to positionz=0 [7]. Having shifted toz=0 allows one to calculate the amputated
vertex function for a given operatorJ for any momentum with one inversion per quark flavor.
In this work we explore the second approach, introduced in Ref. [8], which uses directly Eq. (2.5)
without employing translation invariance. One must now use a source that is momentum dependent
but can couple to any operator. For twisted mass fermions, with twelve inversions one can extract
the vertex function for asinglemomentum. The advantage of this approach is a high statistical
accuracy and the evaluation of the vertex for any operator including extended operators at no sig-
nificant additional computational cost. We fix to Landau gauge using a stochastic over-relaxation
algorithm [9].

3. Results

We perform the non-perturbative calculation of renormalization constantsfor three values of
the lattice spacing,a=0.089 fm, 0.070 fm, 0.056 fm, corresponding toβ = 3.9, 4.05 and 4.20
respectively. In Tables I and II of Ref. [3] we summarize the various parameters that we used
in our simulations. We have tested finite volume effects and pion mass dependence; both effects
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are within the small statistical errors for the operators considered here. Chiral extrapolations are
necessary to obtain the renormalization factors in the chiral limit. Since the dependence on the pion
mass is insignificant, even if we allow a slope and perform a linear extrapolation to our data, this
is consistent with zero; therefore the renormalization constants are computedat one quark mass.
Figures 2-3 demonstrate the effect of subtraction at twoβ values for the local and one-derivative
vector/axial Z-factors, as a function of the renormalization scale (in lattice units). ZV and ZA

are scale independent, thus we obtain a very good plateau upon subtraction of O(a2) effects. To
identify a plateau forZDV andZDA we need to convert toMS and evolve to a reference scale.
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Figure 2: Renormalization scale dependence forZV , ZA at β = 3.9, mπ = 0.430 GeV (left panel) and
β = 4.20, mπ = 0.476 GeV (right panel) (Open points: unsubtracted, filled points: subtracted).
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Figure 3: Renormalization scale dependence forZDV , ZDA (RI′-MOM scheme before evolving at a reference
scale) atβ = 3.9, mπ = 0.430 GeV (left panel) andβ = 4.20, mπ = 0.476 GeV (right panel) (Open points:
unsubtracted, filled points: subtracted).

• Conversion to MS: The passage to the continuumMS-scheme is accomplished through use of
a conversion factor, which is computed up to 3 loops in perturbation theory.By definition, this
conversion factor is the same for the one-derivative vector and axial renormalization constant, but
will differ for the casesZDV1 (ZDA1) andZDV2 (ZDA2), that isCDV1 ≡CDA1 = ZMS

DV /ZRI′
DV1, CDV2 ≡

CDA2 = ZMS
DV /ZRI′

DV2. This requirement for different conversion factors results from the fact that the
Z-factors in the continuumMS-scheme do not depend on the external indices,µ, ν (see Eq. (2.5)
of Ref. [10]), while the results in the RI′-MOM scheme do depend onµ andν . We also need
another factorR(2GeV,µ) that will bring all Z-factors down toµ = 2 GeV, for example

ZMS
DV1(2GeV) = RDV(2GeV,µ) ·CDV1(µ) ·ZRI′

DV1(µ) (3.1)
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Figure 4: Renormalization factors atβ = 3.9, mπ = 0.430 GeV (left panel) andβ = 4.20, mπ = 0.476 GeV
(right panel) in theMS-scheme at 2 GeV. The lines show extrapolations toa2p2 = 0 within the rangep2 ∼

15−32 (GeV)2. (Open points: unsubtracted, filled points: subtracted)

A “renormalization window” should exist forΛ2
QCD << µ2 << 1/a2 where perturbation the-

ory holds and finite-a artifacts are small, leading to scale-independent results (plateau). In practice
such a condition is hard to satisfy: The upper range of the inequality is extended to(2−5)/a2 lead-
ing to lattice artifacts in our results that are ofO(a2p2). Fortunately our perturbative calculations
allow us to subtract the leading perturbativeO(a2) lattice artifacts which alleviates the problem. To
remove the remainingO(a2p2) artifacts we extrapolate linearly toa2p2 = 0 as demonstrated in Fig.
4. The statistical errors are negligible and therefore an estimate of the systematic errors is impor-
tant. We note that, in general, the evaluation of systematic errors is difficult. The largest systematic
error comes from the choice of the momentum range to use for the extrapolation to a2p2 = 0. One
way to estimate this systematic error is to vary the momentum range where we perform the fit. An-
other approach is to fix a range and then eliminate a given momentum in the fit range and refit. The
spread of the results about the mean gives an estimate of the systematic error.In the final results we
give as systematic error the largest one from using these two procedures which is the one obtained
by modifying the fit range. In order to treat all beta values equally, we fix the momentum range in
physical units and we thus fit all renormalization constants in the same physical momentum range,
p2 ∼ 15−32 (GeV)2. The momentum interval in physical units has bean chosen such as a good
plateau exists at eachβ , as can be seen in Fig. 4. TheO(a2) perturbative terms which we subtract,
decrease asβ increases, as expected. The momentum range in lattice units at eachβ is rescaled as
follows: β = 3.9 : a2p2 ∼ 3−5, β = 4.05 :a2p2 ∼ 1.9−3, β = 4.20 :a2p2 ∼ 1.2−2.5. Our re-
sults for theO(a2) correctedZ-factors in theMS-scheme at 2 GeV are given in Table 1, which have
been obtained by extrapolating linearly ina2p2. For ZDV andZDA we used the fixed momentum
rangep2∼ 15−32 (GeV)2 [3], while for ZV andZA we used all the data points available, since the
plateau is good for all momenta. The final results forZV andZA for a more extended momentum
range will appear in [4].

4. Conclusions

The values of the renormalization factors for the one-derivative twist-2 operators are calculated

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
2
4

Renormalization constants for one-derivative fermion operators in twisted mass QCD M. Constantinou

β ZV ZA ZDV1 ZDV2 ZDA1 ZDA2

3.90 0.6343(6)(3) 0.7561(6)(5) 0.970(34)(26) 1.061(23)(29) 1.126(22)(78) 1.076(5)(1)
4.05 0.6628(7)(14) 0.7722(6)(3) 1.033(11)(14) 1.131(23)(18) 1.157(9)(7) 1.136(5)
4.20 0.6854(5)(13) 0.7870(5)(9) 1.097(4)(6) 1.122(7)(10) 1.158(7)(7) 1.165(5)(10)

Table 1: Renormalization constants in theMS scheme, after extrapolating linearly ina2p2. The error in the
first parenthesis is statistical and the one in the second parenthesis is systematic.

non-perturbatively. The method of choice is to use a momentum dependent source and extract the
renormalization constants for all the relevant operators, which leads to a very accurate evaluation
of these renormalization factors using a small ensemble of gauge configurations. We studied the
quark mass dependence and found that an extrapolation to zero quark mass changes the result by
about 1 per mille for all the operators we presented here. This is in most cases by an order of
magnitude smaller than the systematical errors due to lattice artifacts, thereforea calculation at a
single quark mass suffices. For all the renormalization constants shown here we do not find any
light quark mass dependence within our small statistical errors. Therefore it suffices to calculate
renormalization constants at a given quark mass. Despite using lattice spacing smaller than 1 fm,
O(a2) effects are sizable, thus, we perform a perturbative subtraction ofO(a2) terms. This leads
to a smoother dependence of the renormalization constants on the momentum values at which they
are extracted. ResidualO(a2p2) effects are removed by extrapolating to zero. In this way we can
accurately determine the renormalization constants in the RI′-MOM scheme. In order to compare
with experiment we convert our values to theMS scheme at a scale of 2 GeV. The systematic errors
are estimated by ochanging the window of values of the momentum used to extrapolate toa2p2 = 0.
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