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We present perturbative and non-perturbative results@nathormalization constants of the local
and one-derivative vector and axial vector operators. pemdrbative results are obtained using
the twisted mass Wilson fermion formulation employing tvegdnerate dynamical quarks and the
tree-level Symanzik improved gluon action for pion massethé range of about 450-260 MeV
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lattice spacing. In addition, they are translateds at 2 GeV using 3-loop perturbative results
for the conversion factors.
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1. Introduction

Simulations in lattice QCD have advanced remarkably in the past couple afngzanhing the
physical pion mass. The theoretical and algorithmic improvements, combinetheittemendous
increase in computational power, have madbeinitio calculations of key observables on hadron
structure in the chiral regime feasible enabling comparison with experimemm fe@tors and
generalized parton distribution functions (GPDs) can be obtained frogetieralized form factors
in certain limiting cases. GPDs provide detailed information on the internal steucfthadrons
in terms of both the longitudinal momentum fraction and the total momentum tramgfares.
Beyond the information that the form factors yield, such as size, magnetizatith shape, GPDs
encode additional information, relevant for experimental investigatiaicé, &s the decomposition
of the total hadron spin into angular momentum and spin carried by quadckglaans. GPDs
are single particle matrix elements of the light-cone operg{of][1, 2], whichbeaexpanded in
terms of local twist-two operatorg,~tH1#2~ ) — f [ {iuj D*...iD )y, Lattice QCD allows
us to extract hadron matrix elements for the twist-2 operators, which caxpbessed in terms of
generalized form factors.

In order to compare hadron matrix elements of these local operators toregpeone needs
to renormalize them. The aim of this paper is to calculate non-perturbativehgioemalization
factors of the above twist-two fermion operators within the twisted mass formulathe show
that, although the lattice spacings considered in this work are smaller thand (&), terms are
non-negligible and introduce significantly larger uncairtainties than statistioais. We therefore
compute the(a?) terms perturbatively and subtract them from the non-perturbativétsedinis
subtraction suppresses lattice artifacts considerably depending on ehetaypunder study and
leads to a more accurate determination of the renormalization considits [3, 4].

2. Formulation

For the gauge fields we use the tree-level Symanzik improved gauge 8itiarhich includes
besides the plaquette term also rectanglax 2) Wilson loops. The fermionic action for two
degenerate flavors of quarks in twisted mass QCD is given by

S =a"y X(x) (Dw[U]+mo+ipoyT®) X () (2.1)

with 12 the Pauli matrix,ug the bare twisted mass amjy the massless Wilson-Dirac operator.
Maximally twisted Wilson quarks are obtained by setting the untwisted bare qouaskm, to
its critical valuemg, while the twisted quark mass parametgris kept non-vanishing in order
to give the light quarks their mass. In E@.1) the quark fieldsy are in the so-called “twisted
basis”. The “physical basis” is obtained for maximal twist by the simple toansdtionsy/(x) =
exp(767%) X (x), P(x) = X () exp(‘F 7).

Here we consider only the vector and axial twist-two operators up to eneative,Zy, Za,
Zpv, Zpa (symmetrized over two Lorentz indices and traceless), which are givereitwilsted
basis as follows:
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Pysyt?y  a=1 Wwv{uﬁvﬂzw a=1
ﬁ\? :)FVuTaX = —lﬁVSVurll/-’ a=2 ﬁé{‘/‘/}a=x)’{u<ﬁvﬂax = —W%V{uﬁv}flw a=2
Pyy  a=3 WyuDyy  a=3
Pty a=1 PyuDyr?y  a=1
OA=XWWTX ={ ~Iyty a=2 R =Xy D X = ~Ty, Dytly  a=2  (22)
Pty a=3 Py D,y  a=3

In a massless renormalization scheme the renormalization constants ard grefireechiral limit,
where isospin symmetry is exact. Hence, the same valug fsrobtained independently of the
value of the isospin indea and therefore we drop treeindex from here on. However, one must
note that, for instance, the physiday{“ﬁv}rlw is renormalized wittZpa, while EUy{u(ﬁv}r%p
requires theZpy, which differ from each other even in the chiral limit. The one-derivatipe
erators fall into different irreducible representations of the hypeccgtoup, depending on the
choice of indices. Hence, we distinguish betwe@s1 (Opa1) = Opv (Opa) With u = v and
Opv2 (Opa2) = Opv (Opa) With p # v.

2.1 Renormalization Condition

The renormalization constants are computed both perturbatively andeanamratively in
the RI-MOM scheme at various renormalization scales. We translate them tol$hscheme
at (2 GeV¥ using a conversion factor computed in perturbation theorg tg®) as described in
Section 3. The Z-factors are determined by imposing the following conditions:

w1 - .
Za' 2 ST (160 pyy) T (p)]

o pe=b @3

1 [—i3p P 1
2= T | (S(P)
wherep is the renormalization scal§, andl correspond to the perturbative or non-perturbative
results and’y, py, is the tree-level expression of the operator under study. The traceeis ¢atkr
spin and color indices, and the conditions are imposed in the massless theory.

2.2 Perturbative procedure

Our calculation for the Z-factors is performed in 1-loop perturbation théor(a?). The
ordera®-terms can be subtracted from non-perturbative estimates, and thelroarate possible
large lattice artifacts. There are many difficulties when extracting powetiseofattice spacing
from our expressions, since there appear singularities encounteféd?, that persist even up to
6 dimensions (integral convergence in 7-d), making their extraction maiatke In addition to
that, there appear Lorentz non-invariant contributions {a?)-terms, such ag, pﬁ/pz, wherep
is the external momentum; as a consequence, the Z-factors also depsuinthdarms.

For all our perturbative results we employ a Wilson-type fermion action (\Witdover/twisted
mass), with non-zero bare mass, For the renormalization of the fermion field and the local bi-
linears we also have a finite twisted mass param@tgiso we can explore the mass dependence.
For gluons we use Symanzik improved actions (Plaquette, Tree-level Siknamasaki, TILW,
DBW?2) [B]. The expressions for the matrix elements and the Z-factorgiaee in a general co-
variant gauge, and their dependence on the coupling constant, theatxtermentum, the masses
and the clover parametegyy is shown explicitly. The Feynman diagrams involved in the compu-
tation of the various Z-factors are illustrated in Hip. 1. Here we do not stmyexpressions for the
matrix elements of the Green’s functions, since they are far too lengthyn A&gample we show
the 0'(a?) terms that can improve the non-perturbative estimai® aince they are subtracted. For
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Figure 1: One-loop diagrams contributing to the correction of the atated Green'’s functions of the propa-
gator (1a, 1b), local bilinears (2) and one-derivative apms (3a-3d). A wavy (solid) line represents gluons
(fermions). A cross denotes an insertion of the operatoeustiidy.

the special choicessyw = 0, r = 1 (Wilson parameter)) = 0 (Landau gauge)ypy =0, Lo =0,
and for tree-level Symanzik gluorig, can be corrected t6'(a?) as follows:
a’g’Cr 2p “/31(

_ 73
Zamprzz(r;orkpel’t_ o [u2(1.1472—ﬁln(a2u2))+ 12

157, 5 o
21065~ -In(a’u ))} (2.4)
Its most general expression is far too lengthy to be included in paper foisprovided, along
with the rest of our results for the Z-factors, in electronic form in Réf. [4

2.3 Non-perturbative calculation

For each operator we define a bare vertex function given by

12 . _
G(p)zav > e PV 7 (22)d2)d(y). (2.5)

X,y,2,Z
where p is a momentum allowed by the boundary conditiovisis the lattice volume, and the
gauge average is performed over gauge-fixed configurations. oftredf ¢ (z Z) depends on
the operator under study, for examplé (z,z7)=4, 2y, would correspond to the local vector cur-
rent. In the literature there are two main approaches that have been ethfdottee evaluation of
Eq. (2.5). The first approach relies on translation invariance to shiftabedinates of the correla-
tors in Eq. [2]p) to positioz=0 [[4]. Having shifted t@=0 allows one to calculate the amputated
vertex function for a given operatoy for any momentum with one inversion per quark flavor.
In this work we explore the second approach, introduced in Ref. [8icnwuses directly Eq[(2.5)
without employing translation invariance. One must now use a source thatgntom dependent
but can couple to any operator. For twisted mass fermions, with twelve iomersne can extract
the vertex function for ainglemomentum. The advantage of this approach is a high statistical
accuracy and the evaluation of the vertex for any operator including@steoperators at no sig-
nificant additional computational cost. We fix to Landau gauge using aadtictover-relaxation
algorithm [9].

3. Results

We perform the non-perturbative calculation of renormalization constanthree values of
the lattice spacinga=0.089 fm, 0.070 fm, 0.056 fm, correspondingfo= 3.9, 4.05 and 420
respectively. In Tables | and Il of Ref[][3] we summarize the variousupaters that we used
in our simulations. We have tested finite volume effects and pion mass dependeth effects
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are within the small statistical errors for the operators considered hérieal Extrapolations are
necessary to obtain the renormalization factors in the chiral limit. Since thedepee on the pion
mass is insignificant, even if we allow a slope and perform a linear extrapokatiour data, this
is consistent with zero; therefore the renormalization constants are congiuted quark mass.
Figured BB demonstrate the effect of subtraction atfwalues for the local and one-derivative
vector/axial Z-factors, as a function of the renormalization scale (in lattits)u Zy and Za

are scale independent, thus we obtain a very good plateau upon subtfofiga?) effects. To
identify a plateau foZpy andZpa we need to convert tMS and evolve to a reference scale.
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Figure 2. Renormalization scale dependence g, Za at f = 3.9, m; = 0.430 GeV (left panel) and
B =4.20, m; = 0.476 GeV (right panel) (Open points: unsubtracted, fillechfrisubtracted).
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Figure 3: Renormalization scale dependenceZgy, Zpa (RI'-MOM scheme before evolving at a reference
scale) ai3 = 3.9, m; = 0.430 GeV (left panel) an@ = 4.20, m; = 0.476 GeV (right panel) (Open points:
unsubtracted, filled points: subtracted).

e Conversion to MS: The passage to the continuii-scheme is accomplished through use of

a conversion factor, which is computed up to 3 loops in perturbation thé&yrydefinition, this
conversion factor is the same for the one-derivative vector and afiarmalization constant, but
will differ for the case<Zpy1 (ZDAl) andZpy» (ZDAZ); that isCpy1 = Cpar = Z@/ZS\I;J_, Cov2 =
Coaz = ZMS/ZRV,. This requirement for different conversion factors results from #oe that the
Z-factors in the continuurMS-scheme do not depend on the external indipes, (see Eq. (2.5)
of Ref. [10]), while the results in the RMOM scheme do depend gm andv. We also need
another factoR(2GeV, ) that will bring all Z-factors down tu = 2 GeV, for example

(2GeV) = Rov (2GeV, 1) - Cova (1) - Z81 (1)

MS
ZDVl

(3.1)
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Figure4: Renormalization factors & = 3.9, m; = 0.430 GeV (left panel) anf = 4.20, m; = 0.476 GeV
(right panel) in theMiS-scheme at 2 GeV. The lines show extrapolations’{@ = 0 within the rangep? ~
15— 32 (GeVY. (Open points: unsubtracted, filled points: subtracted)

A “renormalization window” should exist fohd.p, << u? << 1/a* where perturbation the-
ory holds and finitea artifacts are small, leading to scale-independent results (plateau).clicpra
such a condition is hard to satisfy: The upper range of the inequality isteden(2 — 5) /a2 lead-
ing to lattice artifacts in our results that are®@fa?p?). Fortunately our perturbative calculations
allow us to subtract the leading perturbat®a?) lattice artifacts which alleviates the problem. To
remove the remainin@(a’p?) artifacts we extrapolate linearly &3 p? = 0 as demonstrated in Fig.
A. The statistical errors are negligible and therefore an estimate of thensyit@rrors is impor-
tant. We note that, in general, the evaluation of systematic errors is difficitlaftpest systematic
error comes from the choice of the momentum range to use for the extrapdtagitp? = 0. One
way to estimate this systematic error is to vary the momentum range where wenp#réfit. An-
other approach is to fix a range and then eliminate a given momentum in theyBtaad refit. The
spread of the results about the mean gives an estimate of the systematimeh®efinal results we
give as systematic error the largest one from using these two prosashieh is the one obtained
by maodifying the fit range. In order to treat all beta values equally, we é&xntbmentum range in
physical units and we thus fit all renormalization constants in the same physiogentum range,

p? ~ 15— 32 (GeVY. The momentum interval in physical units has bean chosen such as a good
plateau exists at eag®y as can be seen in Fi. 4. Th&a?) perturbative terms which we subtract,
decrease aB increases, as expected. The momentum range in lattice units gf éacbscaled as
follows: B =39:a2p?~3—5,3 =4.05:a2p> ~1.9—3, 8 =4.20:a%p? ~ 1.2—2.5. Our re-

sults for theo(a?) correctedZ-factors in theMS-scheme at 2 GeV are given in Tapje 1, which have
been obtained by extrapolating linearlyafp?. For Zpy andZpa we used the fixed momentum
rangep? ~ 15— 32 (GeVY¥ [B], while for Zy andZa we used all the data points available, since the
plateau is good for all momenta. The final resultsZgrandZ, for a more extended momentum
range will appear in[[4].

4. Conclusions

The values of the renormalization factors for the one-derivative twigte?aiors are calculated
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B Zy Zn Zpvi Zpv2 Zpa1 Zppa2

3.90 0.6343(6)(3) 0.7561(6)(5) 0.970(34)(26) 1.061(28)( 1.126(22)(78) 1.076(5)(1)
4.05 0.6628(7)(14) 0.7722(6)(3) 1.033(11)(14) 1.131(PB) 1.157(9)(7)  1.136(5)
420 0.6854(5)(13) 0.7870(5)(9) 1.097(4)(6)  1.122(7)(10 1.158(7)(7)  1.165(5)(10)

Table 1: Renormalization constants in thS scheme, after extrapolating linearlyafp?. The error in the
first parenthesis is statistical and the one in the secorehffagsis is systematic.

non-perturbatively. The method of choice is to use a momentum depermgnesand extract the
renormalization constants for all the relevant operators, which leadsdoyaaecurate evaluation

of these renormalization factors using a small ensemble of gauge cotifigsraWe studied the
guark mass dependence and found that an extrapolation to zero qussich@ages the result by
about 1 per mille for all the operators we presented here. This is in mass$ tgsan order of
magnitude smaller than the systematical errors due to lattice artifacts, themefateulation at a
single quark mass suffices. For all the renormalization constants shaownwiedo not find any
light quark mass dependence within our small statistical errors. Ther#éfsuffices to calculate
renormalization constants at a given quark mass. Despite using latticegpaatier than 1 fm,

0 (@) effects are sizable, thus, we perform a perturbative subtractien(@f) terms. This leads

to a smoother dependence of the renormalization constants on the momentasnataitnich they
are extracted. Residugl(a’p?) effects are removed by extrapolating to zero. In this way we can
accurately determine the renormalization constants in th&/RIM scheme. In order to compare
with experiment we convert our values to & scheme at a scale of 2 GeV. The systematic errors
are estimated by ochanging the window of values of the momentum used toogatespa? p? = 0.
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