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Ghost-gluon coupling, power corrections andΛMS from twisted-mass lattice QCD at Nf = 2 M. Gravina

1. Introduction

ΛMS is the scale of strong interactions. This parameter has to betaken from experiment and
can be determined from the running of the QCD coupling constant. This latter can be calculated
in a variety of non-perturbative ways on the lattice (see [1,2, 3, 4, 5] and references therein).
In thequenchedcase [6] the comparison between the perturbative and lattice determinations over
a large momentum window revealed the presence of a dimension-two 〈A2〉 condensate, signaling
that momenta considered in lattice simulation are in a non-perturbative region. Here we extend the
strategy of [7] to the case ofNf = 2 twisted mass in the sea sector using configurations produced
by the ETM Collaboration [7], in order to study the effect of the quark mass.

2. Lattice computation of the coupling in the Taylor scheme

Following [6], we calculate the strong coupling constant from the ghost-gluon vertex. Gluon
and ghost propagartors in the Landau gauge are defined as

(
G(2)

)ab

µν
(p2,Λ) =

G(p2,Λ)
p2 δab

(
δµν −

pµ pν

p2

)
,
(

F(2)
)a,b

(p2,Λ) =−δab
F(p2,Λ)

p2 (2.1)

whereΛ = a−1(β ) is the regularisation cut-off.G andF are the gluon and ghost dressing functions
which can be determined by a non-perturbative renormalization (MOM). In the Taylor scheme [8],
where the incoming ghost momentum vanishes, the ghost-gluon vertex does not renormalize. This
allows for a simple determination of the renormalized coupling constant in this scheme as

αT(µ2)≡
g2

T(µ2)

4π
= lim

Λ→∞

g2
0(Λ2)

4π
G(µ2,Λ2)F2(µ2,Λ2) ; (2.2)

in terms of only two-point gluon and ghost dressing function. Hereg0 is the bare strong coupling
andµ the renormalization scale. This definition can be used in a lattice determination and is to be
compared with a theoretical formula in order to extractΛQCD. As in thequenchedcase, using the
four-loops expression for the coupling constant in the Tayol scheme [9, 10]

αT(µ2) =
4π
β0t

(
1−

β1

β 2
0

log(t)
t

+
β 2

1

β 4
0

1
t2

((
log(t)−

1
2

)2

+
β̃2β0

β 2
1

−
5
4

))

+
1

(β0t)4

(
β̃3

2β0
+

1
2

(
β1

β0

)3
(
−2log3(t)+5log2(t)+

(
4−6

β̃2β0

β 2
1

)
log(t)−1

))
(2.3)

wheret = ln µ2

Λ2
T

and coefficients are

β0 = 11−
2
3

Nf , β1 = β 1 = 102−
38
3

Nf

β̃2 = 3040.48 − 625.387Nf + 19.3833N2
f

β̃3 = 100541− 24423.3 Nf + 1625.4 N2
f − 27.493N3

f , (2.4)

ExtractingΛT from the lattice data at eachµ2 using this perturbative formula does not lead to
a constant value. To understand the mismatch beetween lattice and perturbative determination, a
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non-perturbative OPE correction to the perturbative formula is to be considered. This accounts for
the minimal power correction associated to the presence of adimension-two〈A2〉 condensate:

αT(µ2) = αpert
T (µ2)

(
1+

9
µ2

g2
T(q

2
0)〈A

2〉R,q2
0

4(N2
C−1)

)
, (2.5)

whereq2
0 ≫ ΛQCD is some perturbative scale. This will cure the mismatch and lead to a good

determination forΛT in the Taylor scheme, which eventually can be be related to the value of the
scale in theMSscheme through

ΛMS

ΛT
= e

−
c1

2β0 = e
−

507−40Nf

792−48Nf = 0.541449. (2.6)

3. Artefacts

We exploited data from ETMC configurations at maximal twist for a variety of run parameters
(tab. 1) in order to study physical and systematic effects inour determinations. This have the
main advantage of reducing the discretization artefacts toO(a2), wherea is the lattice spacing.
Nevertheless, artefacts are expected to came at different levels. A first kind of artefacts that can
be systematically cured [11, 12] are those due to the breaking of the rotational symmetry of the
euclidean space-time when using an hypercubic lattice, where this symmetry is restricted to the
discreteH(4) isometry group. It is convenient to compute first the averageof any dimensionless
lattice quantityQ(apµ ) over every orbit of the groupH(4). In general several orbits ofH(4)
correspond to one value ofp2. Defining theH(4) invariantsp[n] = ∑4

µ=1 pn
µ , if the lattice spacing is

small enough such thatε = a2p[4]/p2 << 1, the dimensionless lattice correlation function can be
expanded in powers ofε :

Q(a2 p2,a4p[4],a6p[6],a2Λ2
QCD) = Q(a2p2,a2Λ2

QCD)+
dQ
dε

∣∣∣∣
ε=0

a2 p[4]

p2 + · · · (3.1)

H(4) methods are based on the appearance of aO(a2) corrections driven by ap[4] term. The basic
method is to fit from the whole set of orbits sharing the samep2 the coefficientdQ/dε and get the
extrapolated value ofQ, free fromH(4) artefacts.

A second kinf of artefact could come from dynamical quark masses. We will argue that this is
a O(a2µ2

q) effect and therefore that it is a lattice artefact. We have calculated theH(4)-free ghost
and gluon dressing functions and combined in order to calculate theH(4)-free lattice coupling
through eq. (2.2). In Fig. 2 one can see the Taylor coupling after hypercubic extrapolation for
differentµq at fixedβ = 3.9 and 4.05. Indeed, a dependence inµq is clearly seen. If it is an artefact
the dependence should be ina2µ2

q . If it is an effect in the continuum it should be some unknown
function of the physical massµq. Trying anO(a2µ2

q) dependence, we write the expansion :

α̂T(a
2p2,a2µ2

q) = αT(p
2)+R0(a

2p2) a2µ2
q , R0(a

2p2)≡
∂ α̂T

∂ (a2µ2
q)

(3.2)

Provided that the first-order expansion in eq. (3.2) is reliable, a linear behaviour ona2µ2
q has to

be expected for the lattice estimates ofα̂T for any fixed lattice momentum computed from simula-
tions at any givenβ and several values ofµq. We explicitely check this linear behaviour to occur
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for the results from ourβ = 4.05 andβ = 3.9 simulations and show in Fig. 3 some plots ofα̂T

computed atβ = 4.05 (where four different quark masses are available) for some representatives
lattice momenta in terms ofa2µ2

q . In fig. 4, we plotR0(a2p2) as a function ofapcomputed for the
four lattices simulations atβ = 4.05 with different quark masses and for the three ones atβ = 3.9.
Indeed, it can be seen that a constant behaviour appears to beachieved forp≥ pmin ≃ 2.8 GeV. We
will not risk an interpretation of the data below(ap)min. The striking observation here is that above
pmin both lattice spacings exhibit a fairly constantR0(a2p2) and a good enough scaling between
bothβ ’s. The fact thatR0 with our present data goes to the same constant for bothβ ’s, leads us to
consider that theµ dependence ofα is mainly a lattice artefact (else it should be a function ofµ
and not ofaµ).

The main result of this work is taking into account the effects due to dynamical quarks in a
global analysis of the lattice determinations. This lead toa proper extrapolation to the continuum
limit, which can be compared with continuous formula in order to extractΛMS.

β aµq Volume Number of confs.

3.9
0.004
0.0064
0.010

243×48
120
20
20

4.05

0.003
0.006
0.008
0.012

323×64

20
20
20
20

4.2 0.0065 323×64 20

This paper String tension

a(3.9)/a(4.05) 1.224(23) 1.255(42)

a(3.9)/a(4.2) 1.510(32) 1.558(52)

a(4.05)/a(4.2) 1.233(25) 1.241(39)

ΛMSa(3.9) 0.134(7)

g2〈A2〉a2(3.9) 0.70(23)

Figure 1: Left: Run parameters of the exploited data from ETMC collaboration. Right: Best-fit parameters
for the ratios of lattice spacings,ΛMS and the gluon condensate (for whicha(3.9)q0 = 4.5 is chosen). For
the sake of comparison, we also quote the results from [13] that were obtained by computing the hadronic
quantity,r0/a(β ), and applying to it a chiral extrapolation.

4. ΛMS and the gluon condensate

The running ofαT given by the combination of Green functions in eq. (2.2) and the extrapo-
lation through eq. (3.2), provided that we are not far from the continuum limit and discretization
errors are treated properly, depend only on the momentum (except, maybe, finite volume errors at
low momenta). The supposed scaling of the Taylor coupling implies for the three curves plotted
in fig. 4 to match to each other after the appropriate conversion of the momentum (in x-axis) from
lattice to physical units, with the multiplication by the lattice spacing at eachβ . Thus, we can apply
the “plateau”-method described in [6] for the threeβ ’s all at once by requiring the minimisation of
the totalχ2:

χ2
(

a(β0)ΛMS,c,
a(β1)

a(β0)
,
a(β2)

a(β0)

)
=

2

∑
j=0

∑
i

(
Λi(β j)−

a(β j)

a(β0)
a(β0)ΛMS

)2

δ 2(Λi)
; (4.1)
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0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

a(β) p

0.3

0.35

0.4

0.45

0.5

0.55

0.6

α T

a µ=0.004
a µ=0.0064
a µ=0.010

β=3.9

0.5 1 1.5

 a(β) p

-500

0

500

dα
/d

(a
2 µ2 )

β=4.05
β=3.9
Average
Fitting window (β=4.05)
Fitting window (β=3.9)

Figure 2: Left: The Taylor couplings estimates, afterH(4)-extrapolation, atβ = 3.9 for µq =

0.004,0.0064,0.010. Right: The slopes for the mass squared extrapolation interms ofap computed for
the four lattices simulations atβ = 4.05 (323×64) with aµq = 0. 003,0.006,0.008,0.012 and for the three
ones atβ = 3.9 (243×48) withaµq = 0.004,0.0064,0.010.

0.000020.000040.000060.000080.00010.000120.00014
HaΜL2

0.345

0.355

0.36

0.365

Α ap=1.08

0.000020.000040.000060.000080.00010.000120.00014
HaΜL2

0.315

0.325

0.33

0.335

0.34

Α ap=1.18

0.000020.000040.000060.000080.00010.000120.00014
HaΜL2

0.305

0.315

0.32

Α ap=1.24

Figure 3: We plot the values of the Taylor coupling atβ = 4.05, computed for some representative values
of the lattice momentum,a(4.05)p= 1.08,1.18,1.24,1.36,1.45,1.52, in terms ofa2(4.05)µ2

q and show the
suggested linear extrapolation ata2µ2

q = 0.

where the sum overj covers the sets of coupling estimates for the threeβ ’s (β0 = 3.9, β1 = 4.05,
β2 = 4.2), the indexi runs to cover the fitting window of momenta to be contained in aregion in
which the slopeR0 ∼−90 was found to be constant.Λi(β j) is obtained for anyβ j by requiring the
best-fit to a constant;c results from the best-fit: it is the Wilson coefficient of the gluon condensate
in eq. (2.5), where the leading logarithm correction is now taken into account, wherea(β0)q0 = 4.5
(this meansq0 ≈ 10 GeV) was chosen. The functionχ2 is minimised over the functional space
defined by the four parameters that are explicitly put in arguments for eq. (4.1)’s l.h.s.:a(β0)ΛMS, c,
a(β1)
a(β0)

, a(β2)
a(β0)

. Thus we obtain all at onceΛMS and the gluon condensate, in units of the lattice spacing
for β0 = 3.9, and the ratios of lattice spacings for our three simulations after the extrapolation to
the limit µq → 0 (see tab. 1). The errors are calculated again by jackknife analysis. The ratios of
lattice spacings can be applied to express the momenta for all the three sets of coupling estimates
plotted in fig. 4 (left) in units of the lattice spacing atβ = 3.9. Thus they indeed match each
other and fit pretty well to the analytical prediction with the best-fit parameters forΛMS and the
gluon condensate, in units of 1/a(3.9) (see tab. 1), as can be seen in the plot of fig. 4 . A detailed
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1 1.5

a(β) p

0.2

0.25

0.3

0.35

0.4

0.45

0.5
α

T

β=3.9 (µ=0)
β=4.05 (µ=0)
β=4.2 (µ=0)

1 1.5 2 2.5

a(β=3.9) p

0.2

0.25

0.3

0.35

0.4

0.45

0.5
α

T

β=3.9 (µ
q
=0)

β=4.05 (µ
q
=0)

β=4.2 (µ
q
=0)

α
T
; a Λ=0.134(7), a

2
g
2
<A

2
>=0.7(2)

α
T
; a Λ=0.134(7), a

2
g
2
<A

2
>=0

Figure 4: Left: The Taylor coupling, free ofH(4) and mass-quarks artefacts, for the threeβ = 3.9,4.05,4.2
and plotted in terms of the lattice momentuma(β )p. Right: The scaling of the Taylor coupling computed
by for the threeβ = 3.9,4.05,4.2 is shown. The lattice momentum,a(β )p in the x-axis, is converted to a
physical momentum in units (the same for the threeβ ’s) of a(3.9)−1.

discussion about systematics can be found in [14] indicating that main sources of errors are under
control. Assuming the valuea(3.9) = 0.0801(14) fm [13], we quote our result as

ΛMS = (330±23)×
0.0801 fm

a(3.9)
MeV , g2(q2

0)〈A
2〉q0 = (2.4±0.8)×

(
0.0801 fm

a(3.9)

)2

GeV2 .

5. Conclusions and outlooks

We computed the renormalized strong coupling constant analyzing a variety ofNf = 2 gauge
configurations generated in the ETM Collaboration. We performed an elaborated treatement of the
lattice artefacts and a precise estimate of the couplings atthe infinite cut-off limit. The coupling
estimates for lattices at differentβ ’s were seen to match pretty well, as should happen if the cut-off
limit is properly taken, when plotted in terms of the renormalization momenta converted to the
same units by applying the appropriate lattice spacings ratios. These ratios could be either taken
from independent computations or obtained by requiring thebest matching with pretty compatible
results. Thus, once we are left with the estimates of the coupling constant extrapolated at vanishing
dynamical massµq, for every value of the renormalization momentum,µ , they were converted via
a fit with a four loops formula into the value ofΛMS. As in th quenchedcase a condensate〈A2〉

is needed in order to get a constantΛMS. As an outlook, we want to apply the same analysis to
the case of lattice QCD withNf = 2+ 1+ 1 andN+ f = 4 dynamical flavors. This will lead to
give a reliable lattice prediction for the coupling constant, say atMZ, to be compared with available
experimental determinations.
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