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1. Introduction

If one uses a lattice regulator to define QCD, renormalisation means thgidrareeters, i.e.,
the coupling constant and the quark masses, acquire a dependeneelatiich spacing such
that physical observables like hadron masses have a finite continuura #mit. This should then
guarantee that all physical quantities have a well-defined continuum limit.

However, it is not always possible to calculate the observables of intirestly on the lattice.
Quite often one can only evaluate certain matrix elements of composite opdratorghich the
desired physical quantity is derived in a second step. In general, itnsigessary to introduce
a-dependent renormalisation factatgor these operators in order to get a finite continuum limit.
For example, moments of structure functions in deep-inelastic scatteringysieq observables,
but they can only be calculated as products of a (perturbatively caldyMfidgson coefficient and
a hadronic matrix element of a local composite operator, which is a long-déstarantity to be
computed on the lattice.

It is therefore important to investigate the renormalisation of composite opgiatéattice
QCD, and the present contribution describes some of the efforts the RCbifboration has
undertaken in this field. For the details we refer to R@f. [1].

2. How to evaluate renor malisation factor s on the lattice

In principle it is possible to calculate tlzefactors of multiplicatively renormalisable operators
by lattice perturbation theory (for a review see Rf. [2]). Howevetypkation theory on the lattice
is computationally much more complex than in the continuum and therefore théatialos rarely
extend beyond one-loop order (see, however, REf{][B, @, 5,MYreover, lattice perturbation
theory usually converges rather slowly so that the accuracy of pativelrenormalisation factors
is limited, even if some improvement scheme is applied.

Therefore nonperturbative approaches have been developedrticugar methods based on
the Schrédinger functional (for reviews see R§f. [7]) and the RINVi&sheme [8]. It is the latter
approach in the slightly modified form of the’RIMOM scheme that was adopted to produce the
nonperturbative results presented below, where we consider onlyosii@pperators constructed
from two quark fields, Dirac matrices and a few covariant derivativeetween.

In the RI — MOM scheme the basic objects are quark two-point functions with an insertion
of the operator under consideration at momentum zero. A suitable renatizali€ondition is
imposed, which does not rely on a particular regularisation so that it capgdeed on the lattice
as well as in the continuum. The latter property entails the possibility to use contiparturba-
tion theory in order to calculate conversion factors leading from the tpsreenormalised in the
RI’ — MOM scheme to operators renormalised in, e.g. M&scheme.

For a multiplicatively renormalisable operator we express the operatormefised in the
scheme at the renormalisation scaleasZzy, (1) (a), whered(a) denotes the bare operator
on the lattice and tha dependence of the renormalisation factor has been suppresseaalesr s
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satisfyingAdcp < p? < 1/ the quantity
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is independent of the scale and the scheme. gérgi) denotes the renormalised coupling in the
scheme?, while y” and 3 are the anomalous dimension and the beta function, respectively,

.. . . /!
whose one-loop coefficients aygandfo. In the simulations we compugg. ™ and evaluate

286! = 077 ()Zg) ywona (W) Zh5re ™™ (1) (2.2)

bare

This expression would be identical fo (2.1) if we knA&Z” and the conversion fact@, ..
exactly. However, these quantities are calculated in continuum perturlthéory, so they come
with certain truncation errors and the result will depend on the choice dftbemediate scheme

. What will also matter is the expansion parameter. It turns out to be adesmtagnot to use

—

gVS but the couplingg™©°M99 as defined in Ref[]9].
In bare lattice perturbation theory one-loop results for renormalisatidoriaare of the form

G
- 16m2
As this expansion in the bare lattice coupliggs often poorly convergent, tadpole-improved per-
turbation theory has been invented, where for an operatorngittovariant derivatives one has

Zare M )pert= 1 (YoIn(au) +0)+0(g"). (2.3)

2
Ziped M) = g ™ [ - % (y@ln(au) +A+(np — 1);1712) +O(g4)} : (2.4)
Here the fourth root of the average plaqueige= <%trUD>1/4 is taken from the simulations and
the expansion parameter is the boosted cougfg- g?/ug. Combining renormalisation group
improvement with tadpole improvement one arrives at “tadpole-improveatmeadisation-group-
improved boosted perturbation theory” or TRB perturbation theory fortgf].

In the above expressions fdrderived from lattice perturbation theory lattice artefacts have
been neglected and only the logarithnaicdlependence has been kept. This is only justified if
a’u? < 1. Unfortunately, this condition is not always fulfilled in our simulations. Ondtiesr
hand, it is straightforward (though increasingly involved for more comfdtaperators) to do
calculations in one-loop lattice perturbation theory with arbitrary values’af. One can then
use the difference between tds with and without lattice artefacts to correct the nonperturbative
simulation results for discretisation errors@fg?).

3. Thesimulations

We use gauge field configurations generated by the QCDSF-UKQCD cmdlidms with two
degenerate flavours of clover fermions and the Wilson plaquette actidimefgauge field. Config-
urations for 4 values o8 are at our disposa3 = 5.20, 5.25, 5.29, 5.40, corresponding to lattice
spacings ~ 0.086, 0.079, 0.075, 0.067 fm. To set the scale for the lattice spacing wediaare
the valuerg = 0.467 fm for the Sommer parameter, and we gy = 0.617 [10] when the\
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Figure 1: ZRC! for the tensor currenipoy, Y before (left panel) and after (right panel) the perturletiv
subtraction of lattice artefacts.

parameter of QCD is needed. For egtive have between three and five sea quark masses so that
a chiral extrapolation to vanishing quark mass is possible.

As mentioned above, we have to compute quark two-point functions with artions of the
operator under consideration, i.e., three-point functions. We restnisetves to flavour-nonsinglet
operators so that only quark-line connected contributions must be &@lughis is conveniently
done with the help of momentum sources introduced in Reff. [11].

4. Extracting the renormalisation factors

The simplest procedure for obtaining a valuez8f' would be to plot the right-hand side of
Eq. @), i.e.AZ7 (U)ZZ) _yiom (M) ZRMOM (1) versusu and to fit a constant to these data in an
interval of u where they form a plateau. Examples of such plots before and after ttueljzdive
subtraction of lattice artefacts are shown in fig. 1. Equivalently one cdutliefivalues obtained
for ZZd 1) = ZZ o (M) ZRAeMOM (1) in the plateau region bz (1) ~*ZR®! (with ZR®! as
fit parameter).

However, there are two effects that jeopardize the reliability of this apprdattice artefacts,
which show up at large values gfand truncation errors of the perturbative expansiodszifi and
ZfFfI”,_MOM, which become noticeable at small valueguofThey might even conspire to produce a
fake plateau. Therefore we have tried to incorporate higher terms in thelpsive series treating
the corresponding coefficients as additional fit parameters. Similarly weditempted to correct
for discretisation effects by including a simple ansatz for lattice artefactainAthe parameters
in this ansatz have to be fitted. We fit the data for all fBuvalues simultaneously and only the
quantitiesZR®! our final results, depend ¢&y the other parameters do not. Two examples of such
fits are shown in Fig]2. For further details concerning the fit procederenust refer to Ref[]1].
The results determined by this fit procedure will be called fit results in theWoin

Unfortunately, these fits work only for the perturbatively subtracted dddavever, for techni-
cal reasons, we have applied our subtraction only for operators witlostt one covariant deriva-

tive. Hence we must apply a different procedure for operators wittertian one derivative: We
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Figure 2: ZRC! (perturbatively subtracted) for the tensor current (lefivgl) andﬁy{164} Y (right panel) as
a function of the renormalisation scale. Also shown are theufives used for the determinationZ#C'.

read offZRC' at u2 = 20Ge\? and take as the error the maximum of the differences with the re-
sults atu? = 10Ge\? and u2 = 30Ge\2. These results will be called interpolation results in the
following. Obviously, this method can also be applied to subtracted data. ridrs essigned by
the fits appear to be seriously underestimated since they are mainly determities dtatistical
uncertainties. Therefore it seems to be more reasonable to finally use endyrtirs from the
interpolation method as these take into account also some of the systematw effec

5. Resaults

Due to lack of space we have to restrict the presentation of our resultetatogs without
derivatives, i.e. the “currents”

o°=ud, 0 =Uyd, 0) = tyd, 0} = Uyyd, 0}, = toud, (5.1)

and the quark wave function renormalisation consEgnt

In Fig. @ we plot the results g8 = 5.40 extracted from the perturbatively subtracted data,
both by interpolation and by means of the fit procedure, and the interpolesuits based on
the unsubtracted numbers as well as one-loop perturbative estimatally tde nonperturbative
results should agree within the errors. In reality, this is not always truge,Niowever, that the
errors of the fit results only account for the (rather small) statisticalrtaioties of the raw data
while the errors of the interpolation results are dominated by systematic eff€hts one-loop
perturbative estimates are larger than the nonperturbative valuesdpatdamprovement works.
TRB perturbation theory, on the other hand, leads to further improvenmintroa few cases, for
some operators it is even worse than ordinary tadpole-improved pdituriiaeory.

In Fig.[4 we compare our fit results for the operators without derivativieh the one-loop and
two-loop perturbative estimates, again foe= 5.40. The numbers from bare lattice perturbation
theory, represented by circles in the figure, exhibit the expected lmehawhe two-loop results
come closer to the nonperturbative numbers than the one-loop estimategh) thdy slightly in
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Figure 3: Results for operators without derivativesfat= 5.40. The filled symbols correspond to our fit
results (circles), interpolation results based on sutdth¢squares) and unsubtracted (triangles) data. The
open symbols represent estimates from bare perturbatemryti{circles), tadpole-improved perturbation
theory (squares) and TRB perturbation theory (trianglasgd on one-loop calculations.
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Figure 4: Results for operators without derivativesfat= 5.40 compared with one- and two-loop lattice

perturbation theory. The crosses correspond to our nampative results obtained by fits of the subtracted
data. The open symbols represent estimates from bare Ipatitur theory (circles), tadpole-improved per-

turbation theory (squares) and TRB perturbation theoigr{gles) in the one-loop approximation. The

corresponding estimates based on two-loop calculatianstawn by the filled symbols.
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the case of the tensor current. Except for the tensor current, tadpoleviempent works also in
the two-loop approximation moving the perturbative values closer to the rionipative numbers.
However, the results from TRB perturbation theory, shown by trianglesiot differ much from
the values found by tadpole improved two-loop perturbation theory.

6. Concluding remarks

The RI — MOM scheme has been established as a method for nonperturbativenedisar
tion that can (relatively) easily be implemented for arbitrary lattice fermionsmbtdum sources
allow us to deal with all operators in a single simulation and at the same time to achiale
statistical errors, but the required computer time is proportional to the nuofilleomenta con-
sidered. One of the largest sources of systematic uncertainties aretidetion effects: Here the
perturbative subtraction of lattice artefacts has proved very helpfuhti@@aum perturbation the-
ory is needed for the conversion to thES scheme. Obviously, one should use as many loops as
are available, but additional improvements are possible through the lcanefae of intermediate
schemes and expansion parameters. Still, it seems that the available peewdRsults cannot
describe the scale dependence below the (surprisingly large) valbuof 8Ge\, as seen, e.g.,
in Fig. fI. Remarkably enough, there are now renormalisation factordatdun two-loop lattice
perturbation theory. Unfortunately, it is difficult to predict their accyraithout comparing with
nonperturbative results, but (at least in most cases) improvement se@rmsk.
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