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We describe an independent method for determining the strong-isospin breaking mass parameter,
2δ = md −mu, which utilizes the baryon spectrum. We use a prudent partially quenched choice
of splitting the valence quark masses symmetrically about the light sea quark mass. This choice
has the consequence of mitigating the most severe partial quenching artifacts. We also discuss
the most significant hurdle to this method which is determining the electromagnetic self-energy
of the neutron-proton mass splitting, a challenge which lacks a satisfactory answer. Despite these
issues, the phenomenologically interesting dependence of mn−mp on δ can be determined.
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1. Motivation

The quark masses are fundamental parameters of the QCD Lagrangian, inherited from their
interactions with the electro-weak sector of the standard model. Determining these fundamental
parameters remains an interesting topic for lattice QCD. There are now several groups reporting
values of the quark masses to high precision. We present a new method for determining the strong
isospin breaking mass parameter, 2δ = md−mu. More than being interesting in its own right, we
would like to know how the neutron-proton mass splitting depends upon this parameter; while the
universe largely respects isospin symmetry, there are few important phenomenological quantities
which have a strong dependence on mn−mp, eg. the neutron lifetime, charge symmetry break-
ing [1] and time-reversal violating pion-nucleon interactions [2] to name a few.

We begin in Sec. 2 by detailing the most significant systematic, the hadron electromagnetic
(EM) self-energy. In Sec. 3, we describe our prudent partially quenched setup, placing the isospin
breaking in the valence sector only, but split symmetrically about the sea quark mass. In Sec. 4 we
display the results of our calculation and in Sec. 5 we conclude.

2. Electromagnetic Self Energy

Understanding hadron electromagnetic self energies is an old problem, originally motivated
to explain the proton-neutron mass splitting [3]. The EM correction presents the most significant
challenge in determining the strong isospin breaking parameter 2δ = md −mu from the nucleon
spectrum. Using the Cottingham formula, a hadrons electromagnetic self energy can be determined
from knowledge of its electromagnetic structure [4]. For example, for spin 1/2 baryons we have

∆MB
γ =−

α f .s.

4π2

∫
∞

0
dQ2

∫ Q

−Q
dν

√
Q2−ν2

Q2

[
3W1(Q2, iν)−

(
1− ν2

Q2

)
W2(Q2, iν)

]
. (2.1)

A dispersion relation can be used to determine the structure functions Wi(Q2, iν), allowing for a
model independent determination of the EM self-energy. There are two difficulties with this ap-
proach however. First, it has been known since 1966 that a subtracted dispersion relation is required
for W1(Q2, iν) [5]. Second, this integral requires renormalization. Fortunately, the second of these
issues was solved by Collins [6] who used the operator product expansion to perform the renormal-
ization and connect the Cottingham formula to the QCD Lagrangian.1 Unfortunately, there is not
yet a satisfying resolution of the first issue dealing with the subtracted dispersion relation.

In Ref. [7], Gasser and Leutwyler provided a comprehensive determination of the quark mass
parameters of the QCD Lagrangian. One method relies on the baryon spectrum, which must be cor-
rected for EM self-energies. In their work, they acknowledged the need for a subtracted dispersion
relation but proceeded to ignore this issue, as the subtraction constant could not be computed. In the
case of the spin 1/2 baryons, they used the elastic scattering data to determine the bulk of the EM
self-energies and knowledge at the time of the inelastic scattering data to estimate the uncertainties.
In Table 1, we collect these results for the nucleon and cascade. If one uses a subtracted dispersion
relation, then the elastic contribution becomes ∆Mγ

n−p =−1.39 MeV plus the subtraction term. The

1We are indebted to L. Yaffe for bring this work to our attention.
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mB−mB′ Experiment ∆Mγ QCD
mΞ−−mΞ0 [MeV] 6.85±0.21 0.86±0.30 5.99±0.37
mn−mp [MeV] 1.29 −0.76±0.30 2.05±0.30

Table 1: Estimates from Ref. [7] of the EM self-energy.

computable elastic contribution is nearly a factor of two different from that in Ref. [7], indicating
the possibility of a large systematic not accounted for. With modern knowledge of nucleon elec-
tromagnetic structure, there is hope to be able to update the Gasser and Leutwyler determination to
properly account for the required subtraction [8].

3. Partially Quenched Set Up

Presently, lattice ensembles are all generated in the isospin symmetric limit with md =mu = m̂.
However, as is known, one can still study isospin breaking corrections by including md 6=mu effects
in the valence sector only using a partially quenched framework [9, 10, 11]. In this work, we use
the prudent choice [12]

mvalence
u = m̂−δ , mvalence

d = m̂+δ . (3.1)

The SU(4|2) partially quenched heavy baryon Lagrangian, needed to quantify the systematics, can
be found in Refs. [9, 10, 12]. We use the conventions of Ref. [12], where it was demonstrated that
with our particular choice of quark masses, the nucleon masses are given through NLO by2

mn,p = M0±
δ̂

(4π fπ)

αN

2
+

m2
π

(4π fπ)

(
αN

2
+σ

r
N(µ)

)
−3g2

A
F (mπ ,0,µ)
(4π fπ)2 −

8g2
∆N
3

F (mπ ,∆,µ)

(4π fπ)2

+
3π∆4

PQ(gA +g1)
2

8mπ(4π fπ)2 , (3.2)

where F (mπ ,∆,µ) can be found in Refs. [10, 12] and F (mπ ,0,µ) = πm3
π . In Eq. (3.2), the first

line (of both mp and mn) is exactly the same as the contributions from SU(2), including isospin
breaking; the second line is the contribution from partial quenching. In our construction, the isospin
breaking mass parameter in the valence sector also describes the partial quenching,

∆
2
PQ = δ̂ . (3.3)

We have isolated these terms to remind the reader they are unphysical partial quenching artifacts.
In the proton-neutron mass splitting, with our choice of partial quenching, the NLO contribu-

tions to the masses exactly cancel. This is not true for general choices of partial quenching, and one
of the great benefits to our choice. Further, it is the NLO terms in the nucleon mass which render
the expansion difficult [13, 14], and therefore this symmetric splitting of the valence quark masses
about the degenerate sea mass renders the chiral expansion for mn−mp as well behaved as that for
pions;

mn−mp =
αN

(4π fπ)
δ̂ +O(δ̂ 2, δ̂m2

π) . (3.4)

2We have defined δ̂ ≡ 2Bδ where B =−〈q̄q〉/ f 2 is the chiral condensate.
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At next-to-next-to leading order (NNLO), this partially quenched construction incurs its first
error. The SU(2) NNLO quark mass Lagrangian contains nine operators [10]. With our symmetric
choice of giving the valence quark masses isospin breaking, there are two operators which do not
give the correct mass shift,

LM ⊃
1

(4π f )3

{
bM

5 N̄N tr(M 2
+)+ tM

3 T̄ µTµ tr(M 2
+)
}
. (3.5)

With our partially quenched SU(4|2) choice, we find (SU(2) denotes the correct mass shift)

SU(4|2) :
δmN =

bM
5 (m4

π )

2(4π fπ )3

δm∆ =
tM
3 (m4

π )

2(4π fπ )3

, SU(2) :
δmN =

bM
5 (m4

π+δ̂ 2)

2(4π fπ )3

δm∆ =
tM
3 (m4

π+δ̂ 2)

2(4π fπ )3

. (3.6)

But these errors are isoscalar and so in the mass splittings, they exactly cancel. At this order in the
expansion, we have introduced no uncontrolled errors. The full mass splitting to NNLO is given by

mn−mp =
δ̂

(4π fπ)

{
αN +

m2
π

(4π fπ)2 (b
M
1 +bM

6 )+
J (mπ ,∆,µ)

(4π fπ)2 4g2
∆N

(
5
9

γN−αN

)
+

m2
π

(4π fπ)2

[
20
9

γNg2
∆N−4αN(g2

A +g2
∆N)−αN(6g2

A +1) ln
(

m2
π

µ2

)]
+

αN∆4
PQ

m2
π(4π fπ)2

(
2− 3

2
(gA +g1)

2
)}

, (3.7)

where the function J (mπ ,∆,µ) can be found in Refs. [10, 12]. The first two lines are the expected
contribution from SU(2) while the last line is the unphysical effects from partial quenching.

4. Numerical Results

Given the difficulties discussed in Sec. 2, there are two ways to proceed. If a suitable determi-
nation of the subtraction constant in the nucleon EM self-energy can not be determined, then the
lattice computation can be used, in conjunction with the experimental neutron-proton mass splitting
to determine the subtraction constant. Up to SU(3) and large Nc corrections, this is the same sub-
traction constant which appears in the mΞ−−mΞ0 EM self-energy. So the cascade mass splitting can
then be postdicted as a consistency check. However, if the subtraction constant can be determined,
then we have an independent means of determining the fundamental parameter 2δ = md−mu. We
will assume the latter to be the case and proceed.

We shall use our lattice calculations of the cascade spectrum to determine δ . This will allow
for a postdiction of mn−mp which is phenomenologically more important. Further, our numerical
cascade correlation functions are significantly less noisy, allowing for a more precise determina-
tion. Until we have a better determination of the EM self energy [8], we shall use the corrections
determined by Gasser and Leutwyler [7] (which ignore the subtraction constant), given in Table 1.
Similar to the nucleons, the cascades are an isospin 1/2 multiplet with a low lying spin and isospin
3/2 resonance. Therefore, the SU(2) heavy-baryon Lagrangian for the Ξs will be the same as that
for the nucleons, differing only the value of the low-energy constants [15].

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
4
3

md−mu André Walker-Loud

ensemble: atms =−0.0743 mπ mK atδ [Nc f g×Nsrc]

L T atml atmval
l [MeV] [MeV] 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0830 490 630 167×25 – 167×25 –
16 128 -0.0840 -0.0840 420 592 166×25 166×25 166×25 166×50
20 128 -0.0840 -0.0840 420 592 120×25 – – –
24 128 -0.0840 -0.0840 420 592 97×25 100×10 193×25 –
24 128 -0.0860 -0.0860 244 506 108×25 – – –
32 256 -0.0860 -0.0860 244 506 104×7 – – –

Table 2: Parameters used in this work.
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Figure 1: Effective mass plots of the ratio correlators Ξ−(t)/Ξ0(t). In the right panel, we plot the effective
masses scaled by 0.001/δ .

For this work, we chose to use the tree level clover improved anisotropic lattices generated by
the Spectrum Collaboration [16]. In Table 2, we list the values of the various lattice parameters
used in this work. To generate the relatively high statistics, we made use of the EigCG deflation
algorithm [17]. While we have results at several values of δ , mπ and the volume, we are limited
to a single lattice spacing. Because we are focussed on mass splittings, the leading discretization
effects exactly cancel, but this is a systematic we can not control on this ensemble. We have used
mΩ to set the scale, finding at ' 0.0324 fm (as ' 0.113 fm).

In Fig. 1, we display effective mass plots of the ratio correlators Ξ−(t)/Ξ0(t) from one of our
ensembles. In the left plot, we display the effective masses, demonstrating the precision of our
calculation. In the right plot, we have scaled these effective masses by 0.001/δ , demonstrating
that for the lightest three values of δ , there is very little indication of non-linear in δ behavior of
the mass splittings. In Table 3, we list our determination of the Ξ mass splittings on the various
ensembles, using our scale setting to convert to MeV. We unexpectedly found a significant volume
dependence in our results. In Fig. 2(a), we plot results of the Ξ-splitting for αtδ = 0.0002 for two
masses on different volumes vs exp(−mπL). In Fig. 2(b), we plot these same results vs mπ . One
sees the volume dependence is at least as significant as the pion mass dependence. To perform the
extrapolation, we use the NNLO formula, Eq. (3.7) including finite volume corrections, giving us
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ensemble: atms =−0.0743 mπ mK δ = 0.0002 0.0004 0.0010 0.0020
L T atml atmval

l [MeV] [MeV] mΞ−−mΞ0 [MeV]

16 128 -0.0830 -0.0830 490 630 4.8(1) – 23.2(3) –
16 128 -0.0840 -0.0840 420 592 4.5(1) 9.0(2) 22.7(5) 46.8(1.7)
20 128 -0.0840 -0.0840 420 592 5.1(1) – – –
24 128 -0.0840 -0.0840 420 592 4.9(1) 10.1(2) 25.0(3) –
24 128 -0.0860 -0.0860 244 506 4.7(3) – – –
32 256 -0.0860 -0.0860 244 506 5.6(3) – – –

Table 3: Resulting Ξ splittings in our calculation.
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Figure 2: (a) plots the volume dependence for the Ξ splitting at atδ = 0.0002, as well as a simple volume
extrapolation. (b) plots the pion mass dependence of the splittings. The blue points are the data while the
red points are volume extrapolated. The green point is extrapolated in mπ and volume.

the determination

Zlatt
m δphys = 0.000216(15)(sys.)(13)[ l.u.] (preliminary) . (4.1)

The first uncertainty is statistical, the second unquoted uncertainty is a fitting systematic and
the third and dominant uncertainty is from the quoted EM self-energy corrections of Gasser and
Leutwyler. Using our lattice results for the nucleon masses, this allows us to predict the strong
contribution to the splitting

mn−mp = 3.40±0.20± sys.±0.74 [MeV] , (4.2)

which is comparable to the values of Refs. [11, 18]. These results make use of the EM self-energy
corrections of Ref. [7] which did not account for the subtraction term known to be needed [5].

5. Conclusions

In addition to having different lattice computations of given quantities to test for universality, it
is also important to have different approaches to check for consistency. We have presented an inde-
pendent means of determining the light quark mass isospin breaking parameter, utilizing the baryon
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spectrum. We have used the prudent choice of splitting the valence quark masses symmetrically
about the degenerate sea quark mass, a choice which mitigates the partial quenching artifacts [12].
In order for this method to be successful, the electromagnetic self energy of the nucleon must be
addressed, an old but unresolved issue. If a means of determining the required subtraction constant
can not be found, then a second consistency check can still be performed; the isospin breaking pa-
rameter can be determined from the meson spectrum, and then used with a lattice calculation of the
strong contribution of the neutron-proton mass splitting to indirectly compute this subtraction con-
stant. These results can then be used to post-dict the mass splitting mΞ− −mΞ0 . In either case, the
phenomenologically interesting dependence of the nucleon mass splitting on δ can be determined.
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