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There is a long standing challenge in lattice QCD concertirggrelationship betwee# &2-
symmetry and lattice chiral symmetry: naively the chirahsyetry transformations are not in-
variant undefg £2. With results similar to a recent work by Igarashi and Pavelow show that
this is because charge conjugation symmetry has been @utlyrrealised on the lattice. The
naive approach, to directly use the continuum charge cauifig relations on the lattice, fails
because the renormalisation group blockings required nstoact a doubler free lattice theory
from the continuum are not invariant under charge conjogatCorrectly taking into account the
transformation of these blockings leads to a modified ka#ic” symmetry for the fermion fields,
which, for gauge field configurations with trivial topolodngs a smooth limit to continuufet &2
as the lattice spacing tends to zero. After construcdhg transformations for one particular
group of lattice chiral symmetries, | construct a latticeéalgauge theory which i#" 4 invariant
and whose measure is invariant under gauge transformatiatis &2.
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1. Introduction

The problem of simulating chiral symmetry on the lattice basn solved using the Ginsparg-
Wilson procedure to derive an alternative lattice chiraheyetry. The symmetry is defined for a
lattice Dirac operatoD by a Ginsparg-Wilson equation [1],

LD+ Dyr =0, (1.1)

wherey and i are local operators which reduce yoin the continuum limit and which satisfy
¥ = y& = 1, and a corresponding lattice chiral symmetry [2]

T PN Y =€eiRy. (1.2)

The simplest known practical lattice Dirac operator whoséa is invariant under a lattice chiral
symmetry is the overlap operator [3],

D = 1+ ysign(K), (1.3)

for some suitable kernel operatdt Conventionally, the symmetry is expressed using the ehoic
v =y andyr = y(1—D). In practice, however, there is an infinite group of (non-owuting)
chiral symmetries satisfied by any Ginsparg-Wilson Diraerafor, including the overlap opera-
tor [4].

A conceptual difficulty with these chiral symmetry relatois that they are not obviously
€ Z-invariant. ¥ &2 symmetry has been applied to the lattice in its continuumnfavhich converts

CP:P—P'W CP:P——-W1lg'
CP s ——W dw €2 :DU,xy] W IDU? xy]"W. (1.4)

For the lattice action to simultaneously respect chiral sty ands’ % symmetry would require
CP v — —W and¥L : i — — ¥, Which has been shown to be impossible for any local
y. and yr with the correct continuum limit [5]. The lattice Dirac opgor obeys the samg &2
transformation law as the continuum operator [6].

In these proceedings, | suggest that this anomaly is caussalbes”%? symmetry (or more
specifically charge conjugation symmetry) has been inctiyreealised on the lattice, and, the
correct form of the symmetry follows naturally from the sa@iasparg-Wilson procedure used to
construct lattice chiral symmetry. In section 2, | review thinsparg-Wilson renormalisation group
procedure as used to construct overlap fermions; in se8tiaumse these results to write down the
modified lattice¥’ &2 relations in the trivial topological sector, and, in segti | construct a chiral
gauge theory. | conclude and give an outlook in section 5.

2. Renormalisation group blockings
Working exclusively in the continuum, for a generating flimigal, with Dirac operatobDg

7= /dLI-’OdUJodU e—sg[UHwODowo-i-jowo-i-WOJo’ (2.1)
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whereS; is some representation of the Yang-Mills action, we cansfieim to a new fermionic
field g with Dirac operatoD using invertible blocking matrice, B anda,

1 3 5 -1
_ L —Sy[U] - WoDoWo+Joto + Woo / — (U, WeB (1B o)
z / du—— / dyodT,e dyndp,e

D/dwldwldu e—%[U]—wlle-%jlwl-ﬁ-lel’ 2.2)
with
1 1 =-1
D=a-aB™"——B "a. (2.3)
Do+ BaB
As a — o, this reduces to
D = BDgB. (2.4)
If the original action is invariant under chiral symmetry,
[ —>Iﬂoé% Yo — ger Yo, (2.5)

then by expanding in infinitesimalit is straightforward to show that the new Dirac operatorysbe
BysB 'D+DB 1B =D(a BB 'D+B lyBa 1)D. (2.6)

Using a — o (so that the right hand side of (2.6) vanisheB)! — D(l"”/ZZDgf(l*”)/2 and
B = D{ M*1M/2z-1p(1+1)/2, with Z defined as a function which commutes withand maps
the eigenvectors ddg onto the eigenvectors @ [7], one obtains the family of chiral symmetries,

yl(_’l) :E(n)%(g(n))fl yl(?”) :(B(rl))flysB(r]) (27)

This formulation only works, of course, if the blocking metsB andB~! are invertible, which
requires (although this condition is not sufficient) tha bocking is between two Dirac operators
with the same rank, i.e. a lattice theory to another lattimmty with (possibly) a different lattice
spacing and physical volume but the same lattice size, ontintmm theory to another continuum
theory. To block from the continuum to a lattice requirest thea express the lattice Dirac oper-
ator as the smooth limit of an equivalent continuum Diracrajme (for example, with the same
dispersion relation and the same renormalisation corgjtahtis can be achieved by decomposing
the Dirac operator into lattice and off-lattice componeg(etg). one could use Schur’s procedure,
although my own work uses a different and more convenienbrdgosition), and then giving the
off-lattice section an infinite mass in the continuum lingttkat it leaves all physics unaffected and
can be safely neglected in a numerical simulation. Thisgutace will, of course, not work for any
arbitrary lattice Dirac operator — even if the Dirac operatare of the same rank, that does not
necessarily or usually imply that the blockings are finitd awertible, but it does work for overlap
fermions [7], as strongly implied by the observation thagrtep fermions do, in fact, satisfy the
Ginsparg-Wilson equation with locg and .
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In the topological sector with no zero modethe overlap and continuum Dirac operators can
be decomposed into a basis defined by the non-zero chiraiveigers oD'D

=34 (19 15)) (o o) (4]

B (1A (e cosm/2  sinr/2 (G|
DO—IZ)\m(‘g. ) 16, >) (_Sinn/z cos/2 ) \ (g | | (2.8)
where
2,/1-D'D/4
— +\ /Gt -\ /6 _
Z—IZ o) (6" [+]ar) (6 | tand = oD (2.9)
and|g®) are defined (up to a constant phase fixed by equation (2.8)jebgduations
D'D[g) =A%[g"). ¥lg) ==g"), (g*lg*) =
DoDolGi") =24 7). ¥ |G) =+167). (g*lg7) =0. (2.10)

It is now straight-forward to construct a practical form fprand i [6],

W =yscos((1 +1)(8 — 11/2)) +sign(ys(D" — D)) sin((n + 1)(6 - 11/2))
W =vscos((n —1)(6 — m/2)) + sign(ys(D" — D)) sin((n — 1)(6 — 11/2)). (2.11)

These operators are local only wh@n+1)/2 is an integer [6] (at the zero eigenvaluesgD' —

D), 8 =0 or /2, so sirf(n +1)(6 — 11/2)) = 0 only for these values af). The conventional
Ginsparg-Wilson relation is the solution gt= 1. It can be shown that these operators have the
correct continuum limit, are Hermitian, unitary, and dtihe Ginsparg-Wilson relation. This
group of lattice chiral symmetries is that discussed by Meen{4].

3. Application to ¥ & symmetry

The transformations of the blockings und€r”? symmetry follow directly from the known
transformations of the Dirac operators asd

v BN W 1B ) Tw, v 2B Sw B Tw, (3.1)
2 W) W) Tw, ¢ " 5wk Tw. (3.2)
The blocked fermion field is given by

wi” =(B") o, 7 =wo(B") 3.3

1The method outlined in this work struggles in other topabatjisectors because of difficulties with relating the
lattice doublers associated with the zero modes with e&aeg of the continuum Dirac operator. This causes a non-
locality in the lattice® & transformations (while a non-local latti@@2? symmetry is tolerable, the lattic€ &7 needs
to correctly reduce to continuufi&? and here the non-locality causes a problem). The issuetithihéattice operator,
which describes two fermion fields, one physical and one lgopis mapped to a single physical continuum fermion. In
future work, | will discuss how this approach is modified wigeldoubler’ fermion is added to the continuum action [6,
8].
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and thus
CP LIJ](_”) _)W—l(w(ln)g(n)(g(*n))fl)T’ P - w:(l_rl) S ((B(fl’]))le(f])w](-n))TW (34)

By writing B and B in terms of their matrix decomposition, following the methoutlined in
equation (2.8), one obtains

E(’])(E(—’]))—l :yénfl)%, ((B(—n))—lg(m = ygyé”’l), (3.5
which gives
BP w](-r’) _)_W—l(w:(l-n)yénfl)vs)-r, P :wg-r’) _)(VS Rnil)l'p](_n))TW' (36)

It can be shown that [6]

ysys' Y, D] =0, W Vs Pyt =y, (3.7)
and hence
¢ :P\"D <1+vR >w1 %w WD+ v Myl Pl = gD+ 1) i,
¢ 2 "Dyl - gDy, (3.8)

Therefore both the standard and chiral gauge Lagrangianis\ariant under this lattice 2.

4. Weyl fermions

To construct Weyl fermions, the measure should be invariadéer both gauge transformations
and% <. On the lattice, the measure depends on the operﬂ@rand therefore the gauge field.
The fermion field can be decomposed in terms of a complets péki”) andg(7-—), where

w(n) :Z[Ci(w)@(nar) + (H(m—)ci(n-,—)L w(n) — Z[Ci(n7+)ai(n,+) +ai(n7—)q(n7—)]_ (4.1)
| |
The measure is thepyMdg™ | = |dd™dd" dc!™ dc")|. The measure of a single
Weyl fermion is constructed from (for exampqu§ and (pi( >. It is convenient to writgp(T-+)

(n,%)

as the eigenvectors qwé”) andg as the eigenvectors qwlf” ), so that

—(n,£ —(n,t
Vé”)(n(”’i) :i(ﬂ(mi)’ yﬁn)(pi(n ):icpi(” ) 4.2)
Under% &2, these eigenvalue equations transform to

_Wfl(yl(_*n))TW((p(n,i,%@))T —+ ((R(n,ifro”ﬁ))T

_Wfl(yé—ﬂ))TW(a(nvifmﬁy))T _ i( (n,+ ('Gﬁy)) (43)
or
¢ g swi g )T, c2: 9" sw (g )T (4.4)
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Since
(R(—n-,ﬂ _ ygyé{’_l) fﬁ(”’i)7 (4.5)

the transformation of the measure for a single Weyl fermian be calculated by applying &?
symmetry to equation (4.1) :

e S VU DL ST pS
| |
and
¢ ) ¢ ) e, 4.7)

and this measure is invariant undérz.

The change in the basis after an infinitesimal change in this bactorsp™ ) — (pj(”’+) +

|
5 (pj(”’+), EE”’*) N Eg”’*) T 6@%”’*) is given bye 2, where [9]

J

If the change in the basis is caused by a change in the Diraatop® — D + oD, then, by
writing @ and @ in terms of the eigenvectotd* andH~ of D and considering the changes of
those eigenvectors under changes of the Dirac operatarifi®possible to show that [6]

67,3l =2 (14 ) 4 (0]
i (m

=S (M0 D)HE) — (HF 160 (6)HC)
1 D'-D

—=_Tr | 68 (D) sin(2a M) ———— | , (4.9)
4 ‘ D'Dy/1— D;D]

with
a'W = (8+(n+1)(m/2-8))/2. (4.10)

For an infinitesimal gauge transformatiérin a representatioR(¢ ), the change in the Dirac oper-

ator is given byd; D = [D,R(¢)], and
ng(E)y/l—?sin(Za(”))] —0 (4.11)

because Ty = 0 and all the other operators commute wjgh Therefore the measure is gauge
invariant.

1
(@™, ") = ST
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5. Conclusion

| have proposed that, in the sector with no global topoldgibarge, the problems associated
with the realisation o6’ %? symmetry with lattice chiral fermions are an illusion dexdvfrom an
incorrect application of the continuum form &f2? symmetry to the lattice. The renormalisa-
tion group blockings used to construct the lattice actianrat themselve® & invariant, so the
% &2 transformation of the lattice fermion fields must differrfiahe transformation of continuum
fermions. Construction of a possible lattizéZ? transformation follows directly from the same
Ginsparg-Wilson procedure used to establish chiral symnaet the lattice. | have also shown that
it is possible to constructd@ <2 invariant chiral gauge action, where the measure is innatiader
gauge transformations ard<?. Similarly a Majoranna action can be constructed, and tlyg$i
correctly accounted for [6]. However, the method outlinedelrequires modification before being
extended to other topological sectors.
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