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1. Introduction

The supersymmetry (SUSY) is believed as a symmetry of the unification theory such as su-
perstring theory and supersymmetric gauge theory is a candidate of a theory beyond the Standard
model. However, it is broken in our current universe anyway.Since it cannot be broken by higher
loop effects in perturbation, it is important to study the breaking nonperturbatively.

Witten index [1] is a useful index related to the spontaneousSUSY breaking, which is defined
nonperturbatively. Using the fermion number operatorF, it is given by the following trace,

w = tr(−1)Fe−βH = (NB−NF)
∣
∣
E=0 , (1.1)

whereH is the Hamiltonian of the system andE is its eigenvalue. As long as the spectrum is
discrete, the index does not depend on a parameterβ .1 It is simply a difference of numbers of
bosonic supersymmetric vacua and fermionic vacua. If the index is not zero, there exists at least
one supersymmetric vacuum so SUSY is not broken. But if the index is zero, SUSY may or may not
be broken, since it can be a result of cancellation between bosonic and fermion vacua, or a result
of no supersymmetric vacua at all. The purpose of this talk isto propose a method to measure
the Witten index using lattice simulation based on Ref. [2].For a different approach from lattice
simulation, see Ref. [3].

In terms of the path integral, the index becomes a partition function with periodic boundary
condition [4, 5]

w = ZP =
∫

Dφ Dψ Dψ exp(−SP), (1.2)

whereφ is boson,ψ andψ are fermion, and subscript P stands for periodic boundary conditions
for all the fields in the temporal direction. It seems difficult to measure this quantity using lattice
simulation, since what we usually measure is an expectationvalue normalized by the partition
function but we need the normalization factor here. The normalization of the path integral measure
is relevant as well.

In the following section, we will discuss how to obtain the correct normalization of the par-
tition function and thus the Witten index. And then in section 3 we confirm that it in fact works
in supersymmetric quantum mechanics of which the Witten index is well known using a lattice
simulation. We also test a method which would improve the efficiency of the measuring the Witten
index.

2. Idea

We have to determine two normalizations: one for the path integral measure and the other is
for the partition function (from the lattice data).

The path integral measure with a correct normalization is easy to obtain. We only have to
follow a standard derivation of the path integral from the operator formalism, where we insert
normalizedcomplete sets at each of discretized time slices ( Fig. 1 ). Regarding the discretization

1If the spectrum is continuum, one has to take a limitβ → ∞.
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insert complete sets

a

T = aN

Figure 1: Obtaining the correct measure: Derivation of the path integral is exactly the lattice regularization.

is the lattice discretization, we obtain the following measures for bosons and fermions:

Bosons:
∫

Dφ =
∫ ∞

−∞
∏

i

1√
2π

dφ (lat)
i , (2.1)

Fermions:
∫

Dψ Dψ =
∫

∏
i

dψ(lat)
i dψ(lat)

i . (2.2)

The correct normalization of the partition function is non-trivial. Let us start with a 1-dimensional
bosonic system withN lattice sites and consider the following quantity:

〈

e+Sexp

[

−1
2 ∑

i
µ2(φ lat

i )2

]

︸ ︷︷ ︸

regularization functional

〉

≡ C
∫

Dφ e−S, (2.3)

whereµ is an arbitrary (positive) real number which should be tunedlater and

C =
∫

Dφ exp

[

−1
2∑

i

µ2(φ lat
i )2

]

= µ−N. (2.4)

Here, we have used eq. (2.1). Combining eq. (2.3) and (2.4), we obtain

Z =

∫

Dφ e−S =
C

〈

exp

[

+S− 1
2 ∑

i
µ2(φ lat

i )2

]〉 . (2.5)

Since we can calculate the value ofC analytically, and the denominator in the r.h.s is an observable
in the lattice simulation, we can measure the partition function Z. Notice that though we have used
a gaussian functional as a regularization functional in eq.(2.3), one can use any functional as long
as it gives a calculable and convergent value like in eq. (2.4).

In the r.h.s. of eq. (2.5), the actionSappears with a “wrong sign” which cancels the original
distribution. That is, the partition function is calculated using an extreme reweighting. To obtain a
better efficiency, we have to tune the value ofµ .

Next let us introduce fermions. After integrating out the fermions, we obtain the effective
action as usual:

S′ = SB − ln |det(D)|, (2.6)

whereSB is the bosonic part of the action andD is the the fermion bilinear operator (i.e., the
Dirac operator plus the Yukawa interactions)2. The phase factor of det(D) should be reweighted

2If the fermion is Majorana, the determinant should be replaced with a Pfaffian

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
5
4

Witten index from lattice simulation Issaku Kanamori

afterwards which gives for arbitrary expectation values

〈A〉 =

∫
Dφ Aσ [D]e−S′

∫

Dφ σ [D]e−S′ =
〈Aσ [D]〉0

〈σ [D]〉0
, (2.7)

whereσ [D] is the phase factor and the subscript 0 stands for a phase quenched average. This
time we have to cancel e a factorσ [D]e−S′ to obtain the partition function. Therefore, measuring
〈σ [D]−1e+S′ exp(−1

2 ∑i µ2(φ lat
i )2)〉, we obtain the Witten index as

w = ZP = C
〈σ [DP]〉0,P

〈
exp

[
+S′P− 1

2 ∑i µ2φ2
i

]〉

0,P

, (2.8)

whereC is given in eq. (2.4).
The r.h.s of eq. (2.7) implies the phase quenched average of the phase factorσ [D] is almost

the partition function. This observation is correct, and eq. (2.8) provides the correct normalization
to the partition function.

3. Numerical Test: Supersymmetric Quantum Mechanics

We test our method using supersymmetric quantum mechanics (of N = 2 Wess-Zumino type)
[6], of which the Witten index is known.

If the lattice action keeps a part of supersymmetry as an exact symmetry on the lattice, we
expect that the Witten index is well defined. More precisely,if the action is given asQΛ with an
exact supertransformation which satisfiesQ2 = 0, we can repeat a similar argument to the contin-
uum case. As a result, the index is well defined even at finite lattice spacing in such lattice models.
In particular, the index from a finite lattice spacing shouldbe an integer.

A Q-exact lattice action for the supersymmetric quantum mechenics is given as [7]

S=
N−1

∑
k=0

[1
2
(φk+1−φk)

2+
1
2
W′(φk)

2+(φk+1−φk)W
′(φk)−

1
2

F2
k +ψk(ψk+1−ψk)+W′′(φk)ψkψk

]

,

(3.1)
whereφk is a real boson,ψk and ψk are fermions, andFk is a real bosonic auxiliary field. The
potentialW is a function ofφ and the prime (′) indicates a derivative. If the asymptotic behavior
is W(+∞)W(−∞) > 0 the supersymmetry is not broken andW(+∞)W(−∞) < 0 it is broken. We
use the following two cases:

• n = 4: W = λ4φ4 + λ2φ2 SUSY, w = 1

• n = 3: W = λ3φ3 + λ2φ2
�

�
��SUSY, w = 0

whereλi are parameters of the potential. We use the Hybrid Monte Carlo algorithm. See [8] for
the implementation for this system.

The results are plotted in Figs. 2 and 3. With a suitable choice of µ2, the known indexes
are reproduced. There is almost no dependence on the latticespacing, as expected from the exact
Q-symmetry of the action.

Next, we consider a possible way to improve the efficiency. Because of the factoreS′P in
eq. (2.8), the efficiency is poor and we need large statistics. This factor cancels the weight from the
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set 4a (Lλ2 = 1,L2λ4 = 1) : µ2 = 2.5, w = 0.88(5)

set 4b (Lλ2 = 4,L2λ4 = 1) : µ2 = 2.0, w = 0.984(12)
set 4c (Lλ2 = 4,L2λ4 = 4) : µ2 = 1.5, w = 0.989(11)

Figure 2: n = 4 case, where the index is known to be 1.L is the physical size of the system. (left panel)
µ2 dependence. (right panel) Lattice spacinga = 1/N dependence. (bottom) values ofµ2 and the measured
indexw, which minimize the error.
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set 3d, µ2=3.0

set 3a (Lλ2 = 4,L3/2λ4 = 4 ) : µ2 = 1.5,−0.024(23)
set 3b (Lλ2 = 4,L3/2λ4 = 16) : µ2 = 2.0,0.0004(7)

set 3c (Lλ2 = 4,L3/2λ4 = 32) : µ2 = 1.5,−0.0009(8)

set 3d (Lλ2 = 2,L3/2λ4 = 16) : µ2 = 1.5,−0.0005(6)

Figure 3: n = 3 case, where the index is known to be 0.L is the physical size of the system. (left panel)
µ2 dependence. (right panel) Lattice spacinga = 1/N dependence. (bottom) values ofµ2 and the measured
indexw, which minimize the error.

action so we do not have to use importance sampling with respect to a weight factore−S. Therefore,
we can also use configurations generated withlessimportance sampling. Decomposing the weight
factor ase−S = e−rSe−(1−r)S, we rewrite a general expectation value as

〈A〉 =

∫
Dφ Ae−rSe−(1−r)S

∫
Dφ e−rSe−(1−r)S

=
〈Ae−rS〉r

〈e−rS〉r
, (3.2)

where〈 · 〉r is an expectation value with a weight factore(1−r)S. Therefore, preparing configurations
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usinge(1−r)S′P, we can obtain the Witten index as follow:

w = C
〈σ [DP]e−rS′

P〉r,P

〈exp
[
(1− r)S′P− 1

2 ∑i µ2(φ lat
i )2

]
〉r,P

. (3.3)

Note thatr = 0 is the usual importance sampling.
We plot the result from the less importance sampling in Fig. 4. On the left panel, we see

that the correct index is reproduced with a suitable choice of µ2. On the right panel, we plot the
behavior of the errors versus number of the configurations used in the measurements. Contrary to
the naive expectation, the magnitudes of the error are the same for large statistics in bothr = 0 case
andr > 0 case. For small statistics, however,r > 0 cases converge to a line(num. of confs.)−1/2

faster thanr = 0 case. This implies that the less importance sampling method is robuster for small
statistics.
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Figure 4: Results from the less importance sampling. (left panel) Theobtained Witten index. Set la-
bels are the same in Figs. 2 and 3. (right panel) Behavior of the errors, for set 4b. The dotted line is
(num. of conf.)−1/2.

4. Conclusion and Discussion

We proposed a method for measuring the Witten index, which isa useful index to detect a
spontaneous supersymmetry breaking. Since the index is given as a partition function under the
periodic boundary condition, it is important to use the correct normalization of the path integral
measure. We also normalized overall factor of the partitionfunction measuring a special regular-
ization functional. As a test of the method, we measured the index of supersymmetric quantum
mechanics. The results reproduced the known values of the index. A disadvantage of the method
is its poor efficiency. A less importance sampling method mayimprove it to some extend.

Finally, we mention possible applications of the method, which may or may not be practical.
It is straightforward to use the method in higher dimensional systems. Within one-dimensional
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systems, the most interesting one is supersymmetric Yang-Mills quantum mechanics with 16 su-
percharges. This model is one of the candidates of M(atrix)-theory, and assumes the Witten index
should be 1 to obtain a suitable supergravity limit.
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