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Extra dimensionslead a troubled existence in field theory, since quantum field theories in
more than four dimensions are plagued by untameable ultraviolet divegerendering any cal-
culation, beyond the solution of the equations of motion, sensitve to the dettiks @fgularization
used. The lattice regularization has the advantage that it can be usedéopamurbative as well
as non-perturbative aspects and thus provide hints about this sensifii@twill use it to study a
particular class of theories, anisotropic gauge theories [1] (with congaage group). We want
to see what effect the anisotropy has on the order of the transitions dretive various phases
(so we specialize to the case of compd¢i)). While there has been a fair amount of numerical
work [2, 3, 4, 5], the reasowhy a second order phase transition should, indeed, appear, has not
been really spelled out. So it's useful to see how this could happen in asterexample—as well
as what could prevent its appearence. In addition, the method usedahdsraapplicability and
deserves being recalled.

The action is in Wilson form

S= 1-Re[Uw]) +p 1-Re[Upy (1)
B;Ku;&d( e[Uw])+B ;d+1§u<zvgd|+m( e[Uu])

corresponding to the situation illustrated in fig. 1 thr= 2 andd, = 1 We shall use a technique

Figurel: Anexample irD =d;+d, = 3, withd; =2 andd, = 1. The plaquettes in thee, x3) and(xs, x1)
planes enter with coefficief’ in the action; the plaquettes in tiwe,x,) plane enter with coefficiers.

developed for implementing the mean field approximation in systems with local symsnigtrie
obtain the phase diagram, namely a trick introduced in ref. [6] (we use it ifothe presented
in[1, 7]).

IMore than the three spatial dimensions we typically perceive. We stick ttiroealimension.
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We insert in the partition function,
Z[J] = /[@U]eis[U]JFZnRe(Ju(n)Uu(n)) (2)

the expression

:/ [I k /dRe(V dim(Vi)6(Re(Vi) — Re(Uy(n)))3(Im(M) — Im (U (n))) (3)
to decouple the gauge links

Z[J] :/[-@U]\];_/xe‘S[UHZnRe(Ju(n)Uu(n)) _

w3 (4)
/i

/dRe(Vl dlm(\/l)daI day ] e Ser[Re(V).Im(vi) o f 37 ]
where the effective actio&«[Re(Vi),Im(M), aR, a/, IR, J!] stands for

21 21
SRe(M), Im(\)] —Z(Re(JmRe(vI) —Im(3)Im(V})) +i ZaFRe(vI)H Zaﬂlm(vn

I|nks

5
- Zw(alRaall) ®)

andw(aR, a/') contains the information about the gauge group,
ew(alR,a|') = /@Uei(aFRe(UuHa"Im(U”)) (6)

So far we have an exact transcription: we have tradedohstrainedvariablesU,(n) (that must
satisfy[Re(U,(n))]? + [Im(U,(n))]? = 1), for theunconstrainedzariables,aR, a!,ReVi),Im(V).
Itis, indeed, the existence of the constraint that leads to a non-triyigndkence on the coupling
constant(s) of the effective action thus obtained, already at the “clédiSkicel.

The effective action seems to have acquired terms that are complex-drotiewvay they
enter allows us to perform a “Wick rotation”a® = a,ia/ = @/ and obtain an action that is
manifestly real:

S«(@R al,ReV),Im(M)) = SReV,),Im(V) +Z (GFReM) +a/Im(V)) Zw al.al) ()

We can, in fact, use this action for Monte Carlo simulations—but, also, fdytize computations,
that are much easier to perform, since we have solved the constrain{8]6, 7

We now specialize eq. 7 to the case of the action in eq. (1) and look fomexttieat are
uniform along thed —dimensional respectively along tide extra dimensionsV =, for links
that belong in thed —dimensional subspaces avd= V' for links that “point out” along thed;
extra dimensions. Similarlg, = a within the d; dimensional subspaces and= a’ along the
d, extra dimensions. A plaquette that lies in the-dimensional subspace makes the following
contribution to the effective action

REUjy (M)]], g = RV HIV)(F+IV)(F =iV (F = iv)] = (V2 + VD)2 (8)
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Similarly, a plaquette that lies in thig —dimensional subspace contributes the expression

(V2 + V1?2 ©9)

Re[U“V |dpara||el+1<u<v<du+dj_

A plaquette that “spans” the subspace betweendalimensional subspaces contributes

RAU (0] v v, = REOFHV) (VR (A= v (VR —iv)) =
2

10
(R4 MR (VR + V) 10

Simple counting allows us to write down the expression for the effective afiiosuch uniform
configurations:

SfRV VRV GRE 0" ar'] = Bd'(d'z_l) (2= (V2 V12)2) +

deﬂd;—”(l (VRP+ VP2 + Bdid) (1- (W2 + VP (VR V') + (D)
|

dj (@®VR+a'v —w(aR,a ))+dL<a’ VRia'v! - (AR,a’I))
For the case of compali(1) the gauge group integral is given in terms of elementary functions:

ew(aR,al): ‘T do a Rcosf+a' sing _ T de \/ RJ2+[a']2coq 6—¢5) =1 [ ] +[al]2 (12)
2n 2n

wherelp(-) is the modified Bessel function.

We notice that the group integral depends only on the length of the “vet@(, a')—and
that the plaquette terms in the effective action depend only on the length ofetbf(s)” (VR V).
The two vectors are coupled only through their “scalar prodw®"~ + a'v', which depends on
their lengths and therelative orientation. This means that we camoosea convenient coordinate
system in this space and, as long as the corresponding symmetry isrtaispously broken, we
can simplify the calculations considerably. We thus choose the orientatidghatsb= 0, v! =0,
a' =0, @' = 0. Indeed we easily check that this choice is a solution of the equationseor th
extrema of the effective action. In a sense this amounts to choosmg &'gadis theory. To
simplify notation we henceforth sef =v, vR=Vv, aR=a, a“=a.

In this “gauge”, therefore, the action takes the form

o~ dj(d;—1 d (d -1
Ser[v,V, @, 0" = ;3'('2) (1-v +B'i(§) (1-v4) +Bdds (1-V2) + (44
dj(@v—w(a))+d, (a’Vv —w(a’))
Compactness of the gauge group implies th@) = 1 ande > w”’(0) > 0. In additionw/ (0) =
These features may be seen to hold for compddy—but they hold foany compact group.
The extrema of the effective action are solutions of the equations
v=dw(a)/da
— A/ A/
vV =dw(a’)/da (14)

a= ZBdH (dH - :I.)V3 + ZBIdeLV\/Z
a’ =2p'd, (d, — 1)v3+2B'd)vAV
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These equations always possess the sothﬁb&’,v,\/) = (0,0,0,0) that corresponds to the con-
fining phase—the string tension is infinite. However they also have nanspéirtions, that depend
on the values of the couplingsand’. The reason this is possible is that uniform configurations
are only invariant under global (constant) gauge transformationseEhitzdr's theorem [9] holds
only if local transformations are possible. Thus inist a contradiction of Elitzur's theorem but
rather a consequence of the fact that the assumption behind it doeslaidbhthe configuration
under study.

We thus find a solution witha, 5’,\/,\/) #(0,0,0,0), which corresponds tod +d, —dimensional
Coulomb phase (since Wilson loops with perimetet L1 + L, behave as*, v* or vtiv't2),

However there also exists a solution with=£ 0,v # 0, al = 0,V = 0. In this phase (hamed
the “layered phase” in ref. [1]) the Wilson loops show perimeter behavithin a d,—dimensional
subspace (since# 0) and show confinement along tde directions, since/ = 0. There isn't
any “bulk” at all: thed, +d, —dimensional space has become a stac#etlimensional layers.
Since the string tension is infinite the layers are infinitely thin and the theory on ighéocal.
Corrections to the mean field approximation will make this string tension finite—tteeslayill
acquire a thickness, inversely proportional to the (square root oftlia) tension and the theory
will display non-localfeatures, if probed at such length scales. For this to be consistent thig str
tension should be much larger than the tension of the fundamental string.

In all cases considered here the boundary conditions are assumegbéoiddic, but all di-
mensions are assumed to become infinite in the continuum limit.

It is interesting to try and see whether the transition from one phase to amaihdecome
continuous. Indeed the mean field approximation to lattice gauge theorieslltypieadicts first
order (discontinuous transitions). The reason can be understondheexpression of the action:
the plaquette terms, in the isotropic case, are quartic in the link variables.nijnteoms that can
contribute to quadratic order are the “constraint” terog— w(a). If we replacev = dw(a)/da
and expand to quadratic order, aroune= 0, we find that this point corresponds to a minimum of
the effective action,that can never become a maximum. Therefore, if amoithienum appears for
o # 0, the transition is, necessarily, of first order. Such a minimum, correlspgpmo a Coulomb
phase, is only credible for a theory withlx1) factor: the putative Coulomb phase turns out
to be an artefact of the mean field appoximation [8] for Yang—Mills theories avitimple Lie
group and Monte Carlo simulations indicate that they are always confinstgogig coupling and
asymptotically free at weak couling [10].

In the case under study here, however, there is a term in the actiooathdestabilize the
confining phase in a way consistent with a continuous transition: the term

= pdjdu (1-vAv?) (15)

is quadratic in the link variables, due to the anisotropy. And these variateswith a sign that
allows them to destabilize the confining phase alongdhalirections. To see this we expand
the effective action around the soluti(ﬁ,o?’ = 0), which exists forB3 large enough an3’ small
enough, within the subspace where dw(a)/da andv = dw(o?’)/d&’. So we considea’ small
enough that we may expand aroumt= 0 to guadratic order—but we retain the exact dependence
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ona. We find

SV, G, 07) ~ Sl 0.8,0] + GW/(0)d, | —B'apA(@)w'(0) + 2 (16)
This expression depends Brimplicitly, sinced = o (B). If v(a) # 0-the system is in the Coulomb
phase within a —dimensional subspace-there is a line,

1
Beit(B) = 2dv(@)w'(0) (17)
such that, fo8’ < B;;, the system is in the layered phase andfor> B, it is in thed; +d,—
dimensional Coulomb phase through a continuous transitionUFby, in particularw’(0) = 1/2
andv(a) is a bounded faunction af(B), that tends to 1 ag () — «. In that limit, which is
relevant a8 — o, we obtain tha{3.,;, — 1/d, a result that is compatible with the mean field
approximation, which may be considered an expansioryd) {and was found in another way in
ref. [1]). This has further interesting consequences since, mamg giga, Peskin [11] noted that at
a second order phase transition point the static quark—anti-quark phteetiged from the Wilson
loop, would display IR behavior independently of the dimensionality. To date an example of such
a system was not available. Anisotropic lattice gauge theories witkla factor could provide
such an example and it will be interesting to explore its consequencesrfimbegh Monte Carlo
simulation.

In conclusion we have identified the mechanism that is behind the transitiortfielayered
phase to the bulk Coulomb phase for anisotropic lattice gauge theoriese \sjmenetry group
contains &J (1) factor. Monte Carlo simulations to check its validity beyond the mean field ap-
proximation are certainly called for and the theory in the continuum limit, espeaidte presence
of matter, remains to be constructed. Theories WiflN) ~ U (1) x SU(N) symmetry group have
been studied in four dimensions [12] and the special behavior &f (hgfactor had been remarked
upon—it would be most interesting to study quantitatively the role of the anmot@ne expects
theU (1) factor to trigger the appearence of the layered phase [13].
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