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1. Introduction

In this short article, we will examine the reflection positivity [1, 2, 3] of lattice fermions defined
through overlap Dirac operator [4, 5], a gauge-covariant solution to the GW relation [4, 5, 6, 7, 8, 9],
which has been derived in the five-dimensional domain wall approach [10, 11, 12]. The reflection
positivity of the GW fermions is not fully understood yet [13, 14, 15], while that of Wilson fermions
has been rigorously proved in various ways including the gauge interacting case [3, 16, 17]. In
the following, It will be shown rigorously that free overlap Dirac fermion fulfills the reflection
positivity with respect to the link-reflection. In ref [13], Lüscher discussed the unitarity property
of free overlap Dirac fermion by investigating the positivity through the spectral representation of
free propagator and concluded that free overlap Dirac fermion has a good unitarity property. Our
direct proof of the reflection positivity given here is consistent with this observation. Our proof
will be also extended to the non-gauge models with interactions such as chiral Yukawa models. For
gauge models, however, a proof of reflection positivity, if any, seems to be more involved and we
will leave it for future study.

2. Reflection positivity

Reflection positivity is a sufficient condition for reconstructing a quantum theory in the canon-
ical formalism, i.e. the Hilbert space of state vectors and the Hermitian Hamiltonian operator
acting on the state vectors, from the lattice model defined in the Euclidean spaceLet us formulate
the reflection positivity condition for lattice Dirac fermions.

We assume a finite lattice Λ = [−L + 1,L]4 ⊂ Z
4 in the lattice unit a = 1, and impose anti-

periodic boundary condition in the time direction, and periodic boundary conditions in the space
directions. The fermionic action is defined in the bilinear form

A(ψ̄,ψ) = ∑
x∈Λ

ψ̄(x)DLψ(x), (2.1)

with a lattice Dirac operator DL
1. The kernel of the Dirac operator should be written as

DL(x,y) = ∑
n∈Z4

(−1)n0D(x+2nL,y), x,y ∈ Λ, (2.2)

where D(x,y) is the kernel of the Dirac operator in the infinite lattice Z4. The quantum theory
is then completely characterized by the expectational functional defined by the fermionic path-
integration:

〈F〉 :=
1
Z

∫
D [ψ]D [ψ̄]eA(ψ̄,ψ)F(ψ̄,ψ), (2.3)

1The reader might prefer the sign convention where A = −ψ̄DLψ in stead of (2.1). These two sign convention in
the fermionic action are connected to each other by the transformation ψ̄ ′ = iψ̄ and ψ ′ = iψ . We have chosen this sign
convention for the sake of the proof of the reflection positivity following [3]. As we will see in section 3, this sign
convention is suitable to prove the statement (iv) ∆A ∈ P̄ .
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where the Grassmann integration for each field variable is specified as∫
dψα(x)ψα(x) = 1,

∫
dψ̄α(x)ψ̄α(x) = 1, (2.4)

and the functional measure is defined by

D [ψ]D [ψ̄] := ∏
x∈Λ;α=1,2,3,4

{dψα(x)dψ̄α(x)}. (2.5)

The reflection positivity condition — a condition on this expectational functuonal — is formu-
lated as follows: let us define time reflection operator θ which acts on polynomials of the fermionic
field variables by the relations

θ(ψ(x)) = (ψ̄(θx)γ0)
T , θ(ψ̄(x)) = (γ0ψ(θx))T (2.6)

θ(αF +βG) = α∗θ(F)+β ∗θ(G), θ(FG) = θ(G)θ(F), (2.7)

where we denote θ(t,xxx) = (−t + 1,xxx) and F,G are arbitrary polynomials of fermionic fields and
* means complex conjugation. Let Λ± ⊂ Λ be the sets of sites with positive or non-positive time
respectively. Let A± be the algebra of all the polynomials of the fields on Λ±, and A on Λ. Then
one says the theory is reflection positive if its expectation 〈·〉 : A → C satisfies

〈θ(F+)F+〉 ≥ 0 for ∀F+ ∈ A+. (2.8)

A popular choice of lattice Dirac operator is the Wilson Dirac operator,

Dw = ∑
µ=0,1,2,3

{
1
2

γµ(∂µ −∂ †
µ)+

1
2

∂ †
µ∂µ .

}
, (2.9)

Here we consider the overlap Dirac operator

D =
1
2

(
1+X

1√
X†X

)
, X = Dw −m, (2.10)

for 0 < m ≤ 1. This lattice Dirac operator describes a single massless Dirac fermion and satisfies
the GW relation, γ5D + Dγ5 = 2Dγ5D. Although the action is necessarily non ultra-local [18], the
free overlap Dirac fermion indeed satisfies the reflection positivity condition, as will be shown
below.

3. Proof of Reflection Positivity of overlap Dirac fermion

To prove the reflection positivity, we need some additional definitions and notations. First, let
us denote

〈F〉0 :=
∫

D [ψ]D [ψ̄]F(ψ̄,ψ). (3.1)
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This 〈·〉0 defines a linear function from A into C. Second, we decompose the lattice action A into
the following three parts :

A = A+ +A− +∆A (3.2)

where A+ ∈A+, A− ∈A−, and ∆A is the part of the action which contain both positive and negative
time fields. Thirdly, let us call P the set of all polynomials of the form ∑ j θ(F+ j)F+ j in a finite
summation, where F+ j ∈ A+.

Although the above definition of P works well for the proof of the Wilson fermion, it is
not enough for the proof of the overlap fermion. In our case of the overlap fermion, one needs
to consider not only finite summations of the form ∑ j θ(F+ j)F+ j, but also infinite summations or
integrations like

∫
dsθ(F(s))F(s) = lim

N→∞

N

∑
k=1

θ(F(sk))F(sk)∆sk, (3.3)

where the integration is defined as a limit of a finite Riemanian summation (see also eq. (3.18)).
To this end, we consider P̄ , the closure of P . The closure P̄ contains not only elements of the
original P , but also all the limit points of conversing sequences in P . That is,

F ∈ P̄ ⇔ ∃{Fn}∞
n=1 ∈ P : lim

n→∞
Fn = F. (3.4)

Here, the sequence {Fn}n ⊂ A is defined to be convergent to some F ∈ A , if any coefficient in
Fn converges to the corresponding coefficient in F as a complex number 2. Note that with respect
to this definition of convergence, the linear operation, the product operation in A , and the linear
mappings 〈·〉0 ,〈·〉 : A → C are all continuous functions, i.e. if Fn → F , Gn → G, then

αFn +βGn → αF +βG, FnGn → FG, (3.5)

〈Fn〉 → 〈F〉 , 〈Fn〉0 → 〈F〉 . (3.6)

Now, we note the fact that the following four statements (i)-(iv) imply the reflection positivity:

(i) If F,G belong to P̄ then FG also belongs to P̄ .
(ii) For all F ∈ P̄ , 〈F〉0 ≥ 0.
(iii) θ(A+) = A−.
(iv) ∆A ∈ P̄ .

In fact, from these statements, it follows that〈
eA θ(F+)F+

〉
0 =

〈
eA++A−+∆A θ(F+)F+

〉
0 =

〈
eA++θ(A+)+∆A θ(F+)F+

〉
0

=

〈
θ(eA+)eA+ e∆A︸ ︷︷ ︸
∈P̄ (by (i),(iv))

θ(F+)F+︸ ︷︷ ︸
∈P̄

〉
0

≥ 0 (3.7)

2This definition of convergence in A is equivalent to the norm convergence of the Grassmann algebra induced from
the metric of the underlying vector space, where the fermionic fields form an orthonomal basis.
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for arbitrary F+ ∈ A+. Considering the special case where F+ = 1 ∈ A+, we have
〈
eA

〉
0 ≥ 0.

Hence, we obtain

〈θ(F+)F+〉 =

〈
eA θ(F+)F+

〉
0

〈eA〉0
≥ 0. (3.8)

Therefore the proof is reduced to showing these four statements (i)-(iv).
Next, we will give the proofs of the statements (i)-(iv). The statement (i) follows from the

similar statement with P , which has been proved for the Wilson case [3] .
To show the statement (ii), one should refer to the definition of fermionic integration measure.

With the definition (2.5), it is sufficient to consider F+ ∈ A+ of the form

F+ = ∏
x∈Λ+;α=1,2,3,4

{ψ̄α(x)ψα(x)} ∈ P, (3.9)

for which one can see ∫
D [ψ]D [ψ̄]θ(F+)F+ = {det(γ2

0 )}16L4
= 1 ≥ 0. (3.10)

Therefore, one concludes that for arbitrary F ∈ P , 〈F〉0 ≥ 0. Take arbitrary F ∈ P̄ . Then there
exists a converging sequence {Fn}n such that Fn → F . From the continuity of 〈·〉0 (see (3.6)), we
obtain

〈F〉0 =
〈

lim
n→∞

Fn

〉
0
= lim

n→∞
〈Fn〉0 ≥ 0. (3.11)

The statement (iii) can be shown by using the property of the overlap Dirac kernel: D†
L(x,y) =

γ0DL(θx,θy)γ0.
To show the statement (iv) ∆A ∈ P̄ , we use a spectral representation of DL(x,y). To derive the

spectral representation of DL, we first Fourier transform the overlap Dirac operator kernel D(x,y)
in the infinite volume:

D(x,y)
∣∣∣
x0 ̸=y0

=
∫ d4 ppp

(2π)4 eip·(x−y) X(p0, ppp)
2
√

X†X(p0, ppp)
, (3.12)

where X(p0, ppp) = ∑µ iγµ sin pµ +∑µ(1− cos pµ)−m. Then, we change the p0 integration region,
[−π,π], to the contours along the imaginary axis in the complex p0 plane by Cauchy’s integration
theorem, as shown in FIG. 1. Depending whether x0−y0 > 0 or x0−y0 < 0, we choose the contours
[iE1, i∞] or [−iE1,−i∞], respectively, to obtain

D(x,y)
∣∣∣
x0−y0>0

=
∫ d3 ppp

(2π)3

∫ ∞

E1

dE
2π

e−E(x0−y0)eippp·(xxx−yyy) X(iE, ppp)√
−X†X(iE, ppp)

(3.13)

D(x,y)
∣∣∣
x0−y0<0

=
∫ d3 ppp

(2π)3

∫ ∞

E1

dE
2π

eE(x0−y0)eippp·(xxx−yyy) X(−iE, ppp)√
−X†X(iE, ppp)

. (3.14)

where E1 is the edge of the cut coming from the square root, and is determined by the relations

X†X(iE1, ppp) = 0, E1 > 0. (3.15)
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In this spectrum representaion of D, it is very crucial to notice the fact that ∓γ0X(±iE, ppp)
(E ≥ E1) are positive definite matrices and there exist matrices Y±(E, ppp) such that

∓γ0X(±iE, ppp) = Y †
±Y±(E, ppp) (E ≥ E1). (3.16)

In fact, it is not difficult to check that Y±(E, ppp) are given by

Y±(E, ppp) = −
3

∑
k=1

l(E, ppp)sin pk

W (E, ppp)
γk ∓ i

W (E, ppp)
2l(E, ppp)

γ0 + il(E, ppp),

where W (E, ppp) = ∑3
k=1(1− cos pk)+1− coshE −m and

l(E, ppp) =

1
2

sinhE

∑3
k=1 sin2 pk/W (E, ppp)2 +1

(
1+

√
1− ∑3

k=1 sin2 pk +W (E, ppp)2

sinh2 E

) 1
2

.

From the equations (2.2), (3.13) and (3.14), we find the spectrum representation of DL(x,y) as
follows: putting V = 1/(2L)3,

DL(x,y)
∣∣∣
x0 ̸=y0

= ∑
ppp

∫ ∞

E1

dE
2π

1
1+ e−2EL

1
V

e−E|x0−y0|eippp·(xxx−yyy) X(εiE, ppp)√
−X†X(iE, ppp)

+∑
ppp

∫ ∞

E1

dE
2π

e−2EL

1+ e−2EL
1
V

eE|x0−y0|eippp·(xxx−yyy) −X(−ε iE, ppp)√
−X†X(iE, ppp)

, (3.17)

where ε is defined as the sign of x0−y0, and the spacial momentum pk runs over pk = nkπ/L, (−L≤
n ≤ L) in the above summation. In (3.17), the first term becomes D(x,y) in the limit L → ∞, and the
second term represents a ‘finite lattice effect’ which vanishes in the limit L → ∞. The latter is the
contribution of the wrong-sign-energy modes and the minus sign appearing in front of X(−εiE, ppp)
comes from the anti-periodicity in the time direction, which is required for the positivity, as will be
seen.

From these observations, now we can show that ∆A ∈ P̄: for the term with x0 > 0, y0 ≤ 0 (in
this case ε = 1), we obtain

∑
x∈Λ+

∑
y∈Λ−

ψ̄(x)DL(x,y)ψ(y) = −∑
ppp

∫ ∞

E1

dE
2π

1
V

[
CE,pppθ(CE,ppp)+DE,pppθ(DE,ppp)

]
, (3.18)

-

6

6
?

0 π−π

iE1r
Re

Im
↑ ∞

-

6

?
6

0 π−π

−iE1
r Re

Im

↓ −∞

Figure 1: Complex integration contours
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where CE,ppp and DE,ppp are defined by

CE,ppp =

√
1

1+ e−2EL ∑
x∈Λ+

ψ̄(x)γ0Ỹ+(E, ppp)†e−Ex0eippp·xxx, (3.19)

DE,ppp =

√
e−2EL

1+ e−2EL ∑
x∈Λ+

ψ̄(x)γ0Ỹ−(E, ppp)†eEx0eippp·xxx, (3.20)

with Ỹ+(E, ppp) = Y+(E, ppp)/(−X†X(iE, ppp))
1
4 . The overall minus sign in the r.h.s. of (3.18) results

from (3.17) by using (3.16). This minus sign is canceled after exchanging the order of the Grass-
mann products in (3.18), and we see that this term belongs to P̄ . One can show similarly that the
term with x0 ≤ 0, y0 > 0 (in this case ε = −1) also belongs to P̄ . Thus we obtain ∆A ∈ P̄ and
complete the proof of the reflection positivity.
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