PROCEEDINGS

OF SCIENCE

New results on the effective string corrections to the
inter-quark potential.

Marco Billd, Michele Caselle * Valentina Verduci and Mirco Zago
Dipartimento di Fisica, Universita di Torino

and Istituto Nazionale di Fisica Nucleare, sezione di Torin

via P. Giuria 1, 10125 Torino (Italy)

E-mail: (bi I 1 0) (casel | e) (verduci) (zago) @o.infn.it

We propose a new approach to the study of the inter-quarkpatén Lattice Gauge Theories.
Instead of looking at the expectation value of Polyakov laoprelators we study the modifi-
cations induced in the chromoelectric flux by the presencthefPolyakov loops. In abelian
LGTs, thanks to duality, this study can be performed in a \edfigient way, allowing to reach
high precision with a reasonable CPU cost. The major adganté this numerical strategy is
that it allows to eliminate the dominant effective stringreation to the inter-quark potential (the
Lischer term) thus giving an unique opportunity to test bigirder corrections. Performing a set
of simulations in the 8 gauge Ising model we were thus able to precisely identifyrapdsure
both the quartic and the sextic effective string correctitmthe inter-quark potential. While the
quartic term perfectly agrees with the Nambu-Goto one thicsterm is definitely different. Our
result seems to disagree with the recent proof by AharonyKamzbrun of the universality of the
sextic correction. We discuss a few possible explanatibtii®disagreement.

The numerical approach described above can also be applied study of Wilson loops. In this
case, the numerical results are precise enough to test thivop prediction of the Nambu-Goto
action. The two-loop NG result computed time ago by by Diei Bilk is incompatible with the
data; however, after correcting some mistakes in theiresgion, compatibility is restored. The
viability of a first-order, operatorial description of thelgdn loop is also pointed out.
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One of the most interesting recent results in the contexhefdffective string approach to
LGT's is the proof of universality of the first few terms of teffective action. Universality up to
the quartic order was proved a few years ago by Lischer andAjHi and recently extended to
the sixth order by Aharony and Karzbrun [2] (see also [3] fdated results). These findings are
based on a set of assumptions and it would be of great impartantest them with a humerical
simulation. This is a very difficult task for at least two reas:

e in the standard "zero temperature" inter-quark poterttigher order corrections are propor-
tional to higher powers in /R (R being the inter-quark distance) and are thus visible only at
very short distance, where the effective string pictureksedown and spurious effects (due
for instance to boundary terms) and perturbative coninhstbecome important;

e the dominant string correction (the so called Lischer tamay shadow the sub-leading
terms.

In order to overcome these two problems we propose the foltpwtrategy. First, instead
of working at zero temperature we shall study the inter-kjyetential at finite temperature (just
below the deconfinement transition). It is well known thathis regime the string corrections are
proportional toR and act as a temperature dependent renormalization ofrthg s#nsion. In this
regime higher order corrections correspond to higher pewEF and can be observed much better
than in the zero temperature limit. Second, in order to elaté the dominant Lischer term we shall
not measure directly the inter-quark potential, but thenglea induced in the flux configuration by
the presence of the Polyakov loops. We shall show below ghat@nsequence of this choice the
Lischer term does not contribute. This makes this approaehyeefficient tool to explore higher
order corrections.

The lattice operator which measures the flux through a ptsejpén presence of two Polyakov
loopsP, P is: )

PPTU
(o(p;P.P)) = % —(Up) , (1)
whereU, is, as usual, the trace of the ordered product of link vaeslalong the plaquettie We
shall be interested in the following to the mean flux densigfined as:

1 « (PPTUp)

(P(RL)) = N—pgw—ww ; (2)
whereN, denotes the number of plaquettes of the lattRes the spatial distance between the
Polyakov loops, namely, the inter-quark distance, hrlde the number of lattice spacings in the
time-like direction. In the following we will also introdecNs to indicate the number of lattice
spacings in the space-like directions, so thal ia 2+ 1 we haveN, = 3N2L.

It is easy to see that if we define the partition function of slgetem in presence of the two
Polyakov loops as

Z(RL) = (P'(RIP(0)) 3)
then(®(R,L)) can be written as:
1d
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wheref is the coupling appearing in the Wilson action with respeaethich the expectation values
are being taken. If we neglect for the moment effective gtdarrections and keep only the area
terminz,i.e. Z(L,R) ~ e “Rbwe find a linearly rising behaviour fa(R,L)):

(P(RL))=aR (5)

with an angular coefficient which in (2+1) dimensions is givmy
g_Ldo  1do
~ NpdB  3N2dB
and does not depend on the finite temperatyie 1

The effective string corrections t8(L,R) depend on the particular string action that we
choose. They can be expanded in powers of the dimensiorlesity (cRL)

(6)

_ Fa Fe
ZILR)=e %Rb.z. (14 2 4+ 2> .. 7
(LR) ! (‘*oRL+(aRu2+' )’ 0

where the indices ifr4 and Fg recall the fact that they are obtained from the quartic anxticse
terms in the expansion of the effective string action retypaly.

The leading order of this expansion, namgiy corresponds to the partition function of a free
boson in two dimensions. This term is universal and does epéxd on the string tensian. Its
dominant contribution in the larde limit is the well known "LUscher term" [4]. The fact thdg
is scale invariant implies that it must also Bendependent and thus disappears in eq. (4). As
anticipated above, the effective string correctiong®gR,L)) start at the first sub-leading term,
the "quartic” correctior,. In the Nambu-Goto case all the terfgsare known [1, 5]. Inserting eq.
(7) in eq. (4) we obtain the effective string correction§®(R,L)). Since we shall be interested
in the largeR limit of these corrections, we find convenient to organizemhvia an expansion in
powers of YR:

(P(RL)) = «a (RA(X)—i—B(X)—i—iRz()—i—...) , (8)

wherex = FHLZ In the Nambu-Goto case these functions can be evaluatdidittxg8] and turn
out to be:

AX) = “% /_i) (9)
1 X
)= X2 (11)

8(Lo)2(1—x)3/2 "
While a depends on the details of the gauge theory and in particulaflects the specifi@@
dependence of the string tension the functionsA(x), B(x),C(x), ... encode the information on
the effective string model. The particular form of thesections given in eq.s (9-11) corresponds
to the Nambu-Goto model; however, according to [1, 2], thet fivo orders in the perturbative
expansion in power of Ao (i.e. in powers ofx) should be universal. In order to identify these
terms, let us expand these functions in powers of

Nm:@+§+§+m>, (12)
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2
B&ﬁi%<§+%+m> (13)

1
CX = g7

To test these corrections we performed a set of high precimulations in the @ gauge
Ising model, using the same methods discussed in [6, 7]. Wapethvia duality the Polyakov
loops correlator into the partition function of @ 8ing spin model in which we changed the sign
of the coupling of all the links dual to the surface bordergdhe two Polyakov loops. We then
estimated(®(R,L)) by simply evaluating the mean energy in presence of thestrdted links.
Further details on the algorithm and on the results of thaikitions can be found in [8]. Since
duality plays a crucial role in this derivation, the apptoaliscussed in this paper is particularly
suited for abelian gauge theories; given enough computtimwer, however, it could be extended
to non-abelian models.

We chose to simulate the model fit= 0.75180, for which botho and the deconfinement
temperature are known with very high precisian= 0.010524115) from [9] and /T, =L, =8
from [10]. Using the above values far and T; and keeping into account the scaling correction
as discussed in [11] we obtain for the prediction that= 2.792 10°° (see [8] for a detailed
derivation). To test at the same time this prediction anddh@ of the effective string correction
we selected two sets of valueslafThe first set contains the values= 16,20,24 and the variable
x was tuned so that the sextic texdy8 in eq. (12) is negligible with respect to the errors, but the
quartic one,x2/8, is not. The second set instead comprises 10,11,12; in these cases also the
sextic term is definitely not negligible with respect to thees.

For each value of L we fitted the data (R, L) according to the law

(1+Xx+...) . (14)

®(RL)=a(L)R+Db(L)+c(L)/R, (15)

where the ternt(L) /R was introduced only for the second set of valuek because it was always
compatible with zero in the first set. In the following we dhaincentrate on the values afL)
which are the most precise and allow to perform a stringesttaithe effective string prediction.
The values o&(L) extracted from the fits are reported in tab.1 and plotted it fid/e analyzed
these data in two steps. First we fitted the first three valfieglo (those corresponding tio =
16,20,24) with the law:
a(lL) = a(1+yx®). (16)

We obtaineda = 2.791817) 10> andy = 0.132(7) with a very good reduceg?. Both these
values nicely agree with the predictioos=2.792 10° andy = 1/8.
We then fitted the whole set of data (i.e. including dlse 10,11, 12) with the law:

alL) =a(l+y®+6x) . (17)
We found again a good reducgd: x2 = 0.45 and the following best fit results:
a =279605) 10°, y=0.127(25), &= —0.051(27).

The first two values agree again very well with the predictibnot the coefficient of the sextic cor-
rection, which should bé = 1/8, completely disagrees with them. This can be well appredia
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looking at fig.1, where we plotted the quartic correctionsfted curve), the sextic correction ac-
cording to the Nambu-Goto effective action (dashed-datigde) and the curve corresponding to
the best fit value of the paramei&i(dotted curve).

(L] al) | | | |
10 ] 3.017(21)| 2.792] 3.137] 3.481
11 | 2.943(20)| 2.792| 3.027| 3.222
12 | 2.917(13)| 2.792| 2.959| 3.074
16 | 2.847(9) | 2.792| 2.845| 2.865
20 | 2.816(9) | 2.792| 2.814| 2.819
24| 2.802(8) | 2.792| 2.802| 2.804

Table 1: Values of the coefficient(k) for various values of L. In the second column we list the tesul
of the simulations extracted from the fits to eq.(15) In tH¥ang columns we report the prediction for
a(L) = aA(x) at the zeroth, first and second order in the expansion in x
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Figure 1: Plot of a A(L) as a function olec = % The continuous line is the prediction far(i.e. without
effective string corrections). The other curves corregshdrom top to bottom to the whole Nambu-Goto
prediction, eq.(9), the truncation at the sextic order, thencation at the quartic order and finally the
dashed dotted line corresponds to our best fit reshk=(—0.05) for the sextic coefficient (see the text). The
points are the results of the simulations in Batgauge Ising model (see tab.1)

This observation agrees with a set of similar results obtain these last years in thd 8auge
Ising model by considering various physical observabksging from the inter-quark potential to
the effective string width to the interface free energy & tlual spin Ising model [12, 9, 11, 13].
All these tests supported, even if only at a qualitativellevealue for the sextic correction different
from the Nambu-Goto one and fully compatible with the one tafind here.
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Our result is rather puzzling in view of the recent proof of timiversality of the string ef-
fective action up to this order id = 3 [2]. A possible explanation could be that the observed
deviation is only a lattice artifact due to unusually largalisg corrections and that the correct
sextic contribution is recovered in the continuum limit. &eful analysis of the scaling behaviour
of (P(R,L)) is reported in [8] and seems to exclude this scenarishows a mild dependence fin
as the critical point is approached. It remains always egand seems to slowly converge toward
the valued = 0.

Another possibility is that the deviation signals that gauge Ising model does not admit a
weakly coupled effective string description. This weak gmg limit is a basic assumption of
[1, 2, 5] and amounts to ask that the partition function ofgtrang describing a particular surface
(say the cylindric surface connecting the two Polyakov K)ogan be written as a sum of single
string states propagating along the surface. The fact fimrgument could be relevant for the
3d gauge Ising model is also supported by the intuitive obdenvahat a gauge theory based on
the Z, group is indeed the farthest possible choice with respetttetdargeN limit of the SU(N)
gauge theory which is known to behave as a weakly couplengstineory. However if this is the
reason behind the disagreement at the sixth order, it iseat why the effective description works
instead so well up to the quartic order. In order to bettereustdnd this issue we plan to perform
the same analysis discussed here for other LGTs so as toaamissight on the dependence of
the d parameter on the gauge group.

Another interesting application of our method is the stuflyhe effective string corrections
for Wilson loops. A long standing problem in this contexthg ffact that the Dietz and Filk [14]
result for the quartic correction in the case of the NambteGation is manifestly incompatible
with the Arvis spectrum [15] for the open string. In partaulin the limit of very asymmetric
Wilson loops, the Dietz and Filk result is one order of magphét larger than (and opposite in
sign to) the one suggested by the open string spectrum. Treslthis issue we performed a set
of high precision simulations choosing the same valueg discussed above and found a value
for the quartic term perfectly compatible with the Arvis spam while the Dietz and Filk result
turned out to be excluded by more than ten standard devéafi]. Triggered by this result we
went through the original Dietz and Filk calculation andritiéed the origin of the discrepancy.
The correct result turns out to be compatible both with theigdspectrum and with the numerical
estimates. For a rectangular Wilson loop of siRendT in aD + 2 dimensional LGT (i.e. witlD
transverse directions) it can be written in terms of Eisagindunctions as follows [16]:

Fs 1 /2 T\?_ (. T DD—-4)_ /. T R
oRT = orT (24) [2D (ﬁ) B ('ﬁ) - 20, ('ﬁ) B ('?)] - (19
The NG string corrections to the Wilson loop can also be cdasgpalong the lines used in

[5] and [17] in the case of Polyakov loops and interfacegeetvely. Replacing the Nambu-Goto
second-order description with a first-order Polyakov ohe,Wilson loop v.e.v. can be given an
operatorial description: it corresponds to the propagatica Dirichlet string whose end-points are
attached to the spatial boundaries of the Wilson loop batviwe states which represent its emis-
sion and re-absorption at times 0 ahdsuch states were already considered in [18]). This way we

can obtain a closed expression for the Wilson loop which eaexpanded in powers of loRT),
which in the NG framewaork corresponds to the loop expansigtiy respect to the NG treatment, it
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is rather straightforward to extract higher loop contribag. Preliminary computations show that
at two loop eq. (18) is reproduced up to the addition of a @mgerm in the square bracket; the
precision of our numerical results does not allow to che¢kiff constant term is supported by data
or not. Such a (rather mild) discrepancy did not arise in tises of Polyakov loops and interfaces,
and it would certainly be very interesting to understanddoéts origin. In [16] we plan to develop
the operatorial approach in a much more detailed way.
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