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1. Introduction

In the past years several authors have devoted some effort to tlysiardd the topological
structures present in pure Yang-Mills theory on the lattice. Apart frorbajlmformation such as
the topological susceptibility, it is interesting to extract local one, such agsstenton size distri-
bution. In some cases one might be able to check certain ideas and psaetating these topo-
logical structures to chiral symmetry breaking and confinement. In thisgmoghe battlehorse
is the roughness of lattice Monte-Carlo configurations, having its originviergént ultraviolet
fluctuations. To tame this noisy background several ideas have beapspih In particular, cool-
ing and smearing algorithms produce smoother configurations which anm@dgo preserve the
long-range structure of the original one. However, these methodshesrecriticised since they
may produce some distortions on the shape distribution of local structurg®pésed alternative
is to use filtering methods based on the Dirac operator or other differepgahtors [1] (see for
example [2] and references therein). For the case of the Dirac opdfeonain idea is the rela-
tion between fermions and topology given by the Atiyah-Singer index thearel the correlation
between the gauge action density and the local density of the eigenstatedifab operator. In
practise, however, these methods are not totally free of ambiguities. &ompdx, when fermions
in the fundamental representation are used to reconstruct the topolcggege density the ability
to reproduce the topological structure depends, in a rather strongpwélye number of modes in-
cluded in the reconstruction. In any case, even for noiseless caatiigus the shape of the filtered
density does not coincide with the corresponding action density.

In this talk we analyse an alternative proposal, presented in [3], bastie aise of the adjoint
representation of the Dirac operator. The advantage of this method isithbaied upon a single
mode and gives a perfect match for classical solutions of the equatiomgtadn. In the next
section we will give details of the method and its lattice implementation. In Section 3hmest
its performance by analysing its filtering capacity for a series of initial géietgeconfiguration.

2. Description of the method

For every gauge field configuration we will construct two associatedics/Neyl fermionic
fields in the adjoint representatiogy. (x), whose densities| (. (x)||?, correspond to a filtered
image of the self-dual and anti self-dual parts of the initial gauge fieldrad@émsity. The Weyl
spinorial fields have componendss . (x) wherea is a 2-component spinor index, aads the
colour index takingN? — 1 values. From now on we will refer to the fielgs. asadjoint filtering
modesor AFM.

An important property that any filtering method should satisfy is that for smoottiigu-
rations the procedure must reproduce the classical structures witistaittidn. The main idea
behind the method introduced in Ref. [3] is that for configurations that@ltdions of the classical
eqguations of motion (classical solutions) there is an optimal choice of therigdifield in the ad-
joint representation that reproduces exactly the shape of the (ant)ss@lpart of the gauge action
density. This is obtained choosing the AFM,., as the chiral components of the supersymmetric
zero-mode of the Dirac operator, defined by:

1
Y= éFuv [Vua VV]Va (2.1)
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whereV is an arbitrary constant spinor. This mode has three interesting properties

1. Itis a zero-modePy = 0.
2. It satisfies the reality condition, I (x)) =0 Va,x.
3. Its density is exactly proportional to the (anti)self-dual part of theygaaction density.

Thus, for a classical solution, if we select a mode satisfying propertiesl 2 athen by virtue of
the third property, we obtain an optimal image of the field density structure.

For a general gauge field configuration, our method consists in finding/éy&spinor fields
in the adjoint representation that satisfy properties 1 and 2 as much asl@oBsfferent versions
of the method follow from the relative importance given to both propertiesvi®us tests [3, 4]
were done by looking first at the subspace of low-lying eigenmodes adjoént Dirac equation
and then selecting the combination which best satisfies the reality condition AEkhenode.

Here we will use an alternative more elegant proposal, also presented. ifBRin which the
reality condition (property 2) is imposed exactly. The other condition is implerddiyteequiring
that the Weyl spinor is an eigenvector of lowest eigenvaluel?ﬁ. For a left-handed (positive chi-
rality) spinor this becomes DD, whereD = D, 0, (D = D,,0,,) are the Weyl operators. Actually,
in the adjoint representation all eigenvalues are doubly degenerate eduelithean CP invariance.
Then, using any eigenvectgr and its charge conjugatf: = o>(/* one can form a colour vector
of quaternionic matrices

(W, yc) = Wiy, (2.2)

whereg, = (I, —iT), o, = (1,iT) andt; are the Pauli matrices. The eigenvalue equation becomes
an equation acting on quaternionic matrix fields, and the reality condition amiau#fs(x) = 0.
In summary, the positive chirality AFM mode is defined by the eigenvalue conditio

—DDW' (x)ai = AW (X)ai, (2.3)

or equivalently ‘
oierqur(x) =AW (x), where Oﬁ( = —DuDvngvfﬂJk, (2.4)

andn andn are the ‘t Hooft symbols. The last expression can be expanded agdtwe
Oﬁj_ = —dj Dﬁ — Sijkf]juvDuDV = —éj D;ZJ + ié‘ijk(Ek—l— Bk) . (2.5)

Notice, that theD" operator is a positive definite, real, symmetric operator, so that its eigesvalu
are positive real numbers. For gauge configurations which are sawfdhe classical equations
of motion the lowest eigenvalue vanishes and generically is non-degendiiae corresponding
eigenvector is the supersymmetric zero médgx) O (E; + Bj).

For arbitrary gauge configurations the minimum eigenvalu®ofis non-zero. Its corre-
sponding eigenvector is, by definition, the AFM mode. Its density providesiltbred version of
the self-dual part of the action density. The usefulness of the methahdsmn its capacity to
eliminate high frequency noise without altering the shape of smooth structartiss talk we will
present the results of our tests done on both smooth and rough cotifigsra

The previous formulae can be repeated for the negative chirality modeh wioeides a fil-
tered version of the anti-self-dual part of the action density. The sporeding operator is now
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replaced by
Oi_j:_dei_iEijk(Ek_Bk)- (2.6)

In order to obtain a lattice implementation of the filtering procedure it is more cogneto
work with the overlap Dirac operator and construct the hermitian, positifiaite matricesH2 =
P (ysDov)?P:, WhereP. are the projectors onto the positive and negative chirality modes. The
two-fold degeneracy associated with CP invariance also holds on the latiitieat the operators
can be taken to act on quaternionic vectors. Imposing the reality conditiats te the

Of = RH2Py, (2.7)

where the action ofy on a quaternionic field is given BW =W — %aoTr(oolP).

The AFM modes are the eigenvectors of lowest eigenvalugofind can be obtained by a
conjugate gradient algorithm. Details of the technique used to compute tHamizérac operator
and other numerical aspects can be seen in Ref. [5]

3. Testing the filtering method

In this section, we present the results of our tests of the filtering proeedoen applied to
various lattice configurations. First, we apply it to an instanton configurafd®ing a classical
solution the method should work well, but it will allow us to quantify the finite volumd dis-
cretisation effects. Next we apply it to a series of instanton-anti-instabmpairs with varying
separations. This is intended to monitor possible distortions and problemsedhilchoccur when
applied to smooth configurations which are not classical solutions of thetieqa of motion. Fi-
nally, we will go back to the single instanton case and add stochastic noise thatfiltering
method should be able to reduce this noise and produce a neat image ofidrlyiag smooth
configuration.

3.1 Results for Classical solutions

The first test is done over a set of smoofh=1, SU(2) instanton configurations generated
by cooling. In this case, th®" operator should have one zero-mode corresponding exactly to the
supersymmetric zero-mode. As will be discussed below, discretisationratelvfolume effects
may shift the corresponding eigenvalue from zero. Still, we observdhbatensity of the lowest
eigenvector of theD" operator reproduces to an excellent degree the instanton action density.
Fitting both the action and the AFM mode densities to the continuum formula, weeixtséanton
positions and sizes that differ at mostiX = 0.01a, and inAp = 0.05p, respectively.

In contrast to the situation in the continuum, the lowest eigenvalu@ofs different from
zero. This is due to discretisation errors and finite volume effects. The #aiserfor the case of
periodic boundary conditions (PBC), beca@e- 1 classical solutions do not exist on a periodic
torus [6]. This is, however, not the case if twisted boundary conditibBE] are used instead.

To explore both effects we have generated a large set of SU(2) instemdigurations with
varying sizes for both PBC and TBC. Fig. 1a displays the lowest eigem@aijiof theO* operator
as a function of the inverse instanton size squarg@?. As expected); approaches zero in the
continuum limit asa®/p#, with a coefficient of approximately-80~4.
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Figure 1: (a) The lowest eigenvalue of thE" operator, on a siz@ instanton background, is
displayed as a function @f /p? for two different lattice sizes and boundary conditions. The finite-
volume effects become sizable for periodic BC &ng 4p. They are negligible for time-twisted
BC (k=(1,1,1), m=(0,0,0)). (b) The three lowest eigenvalues of B€ operator, on an IA pair
background, are displayed in terms of the IA distar)e I evel crossing appears @t 1.8p.

In what concerns finite-volume effects, a clear distinction can be obddretween periodic
and twisted boundary conditions, as expected. In the twisted case, alasdidions exist for all
torus sizes and we observe no corrections to the lowest eigenvalugilnhénose associated to
discretisation effects. For periodic BC, however, we observe a lageatibn from the expected
behaviour forL < 4p.

3.2 Smooth non-classical configurations

According to our proposal, even for non-classical configurationdawest eigenvector of
the O" (O~) operator should provide the filtered action densities of the self-dutitgalfr-dual)
part of the gauge field. Since only for classical solutions there is art smpersymmetric zero-
mode, it is not guaranteed that the filtered image of non-classical caatiiggus has no distortions.
In order to test this, we have analysed a set of instanton-anti-instaprdhfigurations with
varying separation. The set is generated by cooling an initial well-seggapair and monitoring
the different stages of the IA annihilation process. Fig. 2 displays oagstiot corresponding to
IA distanced = 3.5p. We compare the AFM densities with the self-dual and anti-self-dual parts
of the action density. The agreement is excellent and, as expecte@; thmvest eigenvectors
are only sensitive to objects with the appropriate chirality. In order to obtaior@ quantitative
comparison, we extract the size parameter of the (anti-) instanton by fittihgtihhe AFM and
action densities. Both determinations differ by 5% at most as long as the bkatgm is larger
than 2.

Although the Dirac operator does not have zero-modes on IA backgspwe expect the
lowest eigenvalue in each chiral sector to go to zero as the I-A sepaiatimmeased. To show that
this is indeed the case, we display in Fig. 1b the three lowest eigenvalues®f thperator versus
the 1A separation. The smallest one is well described by an exponentialgateéng function of the
IA separation asl’A; = 16 exg—2d/p). For distances ~ 2p we observe a level crossing in the
spectrum of thé* operators. For even smaller separations the lowest mode no longeruepsod
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Figure 2: For an instanton-anti-instanton pair, at separatier8.5p, we display 2-d slices of:
(Left) the self-dual (red) and the anti-self-dual (blue) parts of thmaaensity. (Right) the AFM
density corresponding to the positive (red) and the negative (blualitiess.
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Figure 3: Comparison of the gauge action density (left) and the AFM demigjtt)for a configu-
ration generated by applying ten heat-bath swefps 4) to a smooth instanton configuration.

the IA gauge action density. Hence, we conclude thaGtheperators can identify the components
of the IA pair as long ad > 2p.

3.3 Configurations with stochastic noise

The most important test, prior to its application to Monte Carlo configurations sisde that
the procedure does indeed filter out high frequency noise from thngtaonfiguration, exhibit-
ing its long-range structures. For this purpose, we began by genesatiegal smooth instanton
configurations and added random noise to them. The way this was doneyveaplying to the
configuration a small number of heat bath updates corresponding to a \&dson with different
values of3. The small number of updates and the large valug8 gfiarantee that the instanton
is not destroyed in the process, but considerable noise is addededuits presented here corre-
spond to an initial instanton of size= 3.44a, on a periodic/twisted lattice of size 4,40 which ten
heat bath sweeps (with= 30,20,8,7,6,5, and 4) have been applied. The process is repeated with
ten different initial random seeds giving rise to a heated instagt@embldor eachf3 value and
BC. A characteristic example is shown in Fig. 3, where we display the AFMlzndauge action
densities for one rough configuration with= 4 and PBC. While the action density dramatically
roughens under heating, the AFM density is practically insensitive to thefleglhhency modes.
The same is observed in the twisted case and for alBtiialues analysed. This is a good proof of
the extraordinary filtering capacity of our method

The ability of the method to recover the initial instanton structure is related to thehiat,
despite the eigenvalue becoming non-zero after the addition of noise, siemes to be no level
crossing and the AFM is always cleanly separated. This is clearly sedg.id Where we display
the four lowest eigenvalues of tki"™ operator as a function &1, for periodic (left), and twisted
(right) boundary conditions. Notice that not only is there no level crgsdiat also the gap seems
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Figure 4: We display the four lowest eigenvalues of @e operator for the ensemble of heated
instanton configurations described in section 3.3. For each valyeveé plot the eigenvalues
averaged over the ensemble of heated configurations, with errordraesponding to the variance
of the sample. The continuum lines correspond to a second order qrajyeemial fit in 1.

to remain constant when the size of the noise (controlle@1Y increases. The data for the lowest
(AFM) and first excited eigenvalues 6f* are well fitted by a second degree polynomiaBint,
which is the form predicted by perturbation theory around the instantdigcoation. The constant
term is fixed to the value obtained for the instanton before heating (whidhdoground state is
determined by finite-volume and finite lattice spacing errors). The remainigifiaents turn to
be very similar for both eigenvalues and boundary conditions.

4. Conclusions

In this talk we have analysed the results of the filtering method proposed irf3efhen
applied to different lattice configurations, some smooth and some rough.reShlts are quite
encouraging and point out to the main difficulties one might encounter whgiag the method
to thermalised Monte Carlo configurations. Additional details and tests cauhd fn Ref. [5, 7].
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