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Recently we have proposed a new reformulation of Yang-Mills (YM) theory based on new variables on a
lattice by extending the Cho-Faddeev-Niemi-Shabanov decomposition. Our reformulation allows options
discriminated by the stability groug of the gauge groufs. WhenH agrees with the maximal torus group

H, it reduces to a manifestly gauge-independent reformulation of the conventional Abelian projection in the
maximal Abelian gauge. Within this framework, a non-Abelian Stokes theorem enables us to express the
Wilson loop operator in the fundamental representation by the “Abelian" variable extracted in association
with the stability group in the minimal option, and to rewrite the Wilson loop operator using a non-Abelian
magnetic monopole defined in a manifestly gauge-independent wag F&U(3), two options are possible:
minimal one withH = U (2) and maximal one witd = U (1) x U(1). In this talk we summarize the results

of Monte Carlo simulations for SU(3) in the minimal option. Especially, we compare three Wilson loop
averages defined by the “Abelian" variable, the monopole part and the original YM field. We confirm that the
guark—antiquark confining potential is reproduced by the “Abelian" variable (“Abelian" dominance), and that
the string tension is reproduced by the non-Abelian magnetic monopole (magnetic monopole dominance).
Moreover, we mention the behaviors of correlation functions for new variables.
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1. Introduction

The dual superconductivity picture is a promising mechanism for quark confinement. In this picture, the
magnetic monopole plays an important role for quark confinement. It is known that the string tension of the
Abelian part and the monopole partin Yang-Mills (YM) fields reproduce the original one, which is respectfully
called Abelian dominance and monopole dominance in the string tension. In the other approach, the center
vortex can explain the string tension. However, such dominances have been observed only in the special gauges
such as the maximal Abelian (MA) gauge or the maximal center gauge, whereas this is not the case in other
gauges.

We have given a new description of the YM theory on a lattice, which is expected to give an efficient frame-
work for explaining quark confinement based on the dual superconductivity picttire gauge independent
manner In theSU(2) YM theory, it is constructed as a lattice version of the Cho-Faddeev-Niemi-Shabanev
(CENS) decompositio2] in a continuum theond][4][5], and in theSU(N) YM theory (N > 3) we have the
reformulations discriminated by the stability grodpof gauge grous = SU(N) [6].

In the SU(2) case, we have an unique option with the stability grélip- U (1). While in the SU(3)
case, we have two options: (i) the maximal one with the stability subgrbepU (1) x U (1), which is the
gauge-independent reformulation of the Abelian projection represented by the conventional MA gauge, (ii) the
minimal one with the stability groupi = U (2), which is a new type of formulation and derives a non-Abelian
magnetic monopolér].

ForSU(2) case, in fact, our numerical simulation demonstrated that the gauge-invariant magnetic monopoles
constructed reproduce the string tensidh) &nd that “Abelian” dominance holds, that is, the Wilson loop by
using the decomposed “Abelian part” reproduces the string tension in the quark-quark static pdtéjntial [
While in the Landau gauge, we have shown that the infrared “Abelian" dominance in the propagator, i.e., the
extracted "Abelian" propagator is dominant in the infrared re@pnFor SU(3) case, applying this frame-
work, we have demonstrated the numerical simulations for the maximal option in the lattic®p0d[ for
the minimal option in the results lattice20(B]].

In this talk, we apply this method to investigate the dual superconductivity picture. In what follows;
restricting to the minimal option foBU(3) YM theory. We summarize the result of the lattice formulation.

By combining non-Abelian Stokes’ theorem (NAST) with the decomposition, we show the decomposition-can
extract the dominant degrees of freedom that are relevant to quark confinement in the Wilson criterion in such a
way that they reproduce almost all the string tension in the linear inter-quark potential. It should be noticed-that
for the Wilson loop for quark in the fundamental representation, the relevant part of YM is decomposed by the
minimal option, not the maximal option. Then, by using the Hodge decomposition, we can define non-Abelian
magnetic monopoles from the decomposed relevant part in the gauge invariant manner.

We perform the numerical simulations to investigate, speaking in conventional sense, “Abelian” domi-
nance and magnetic monopole dominance as was carried out®tR¢ case. Since the relevant part of YM
field for confinement corresponds to the stability grélig- U (2), we may call restrictetd (2)-dominance and
non-Abelian magnetic monopole dominance&id(3) YM theory.

2. New variables on a lattice

We summarize the new description of tBe= SU(N) (N = 3)YM theory on a lattice. The YM field
Ay is represented as a link variable

X+[le
Uxp = exp(—ig/ dx“Au(x)> = exp(—igeAy ), (2.1)
X
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which is supposed to be decomposed into the product of new variaglesyy ;, € SU(N),
Ux7u — XX,[JVX,[J! val'l — eXp(—IgEVx/iu) 5 XX,“ — exp(—lgEXXu) 5 (22)
such that the decomposed variables are transformed by a full gauge transfol@ati@U(N):

Uxu — U;# = Qxe.pQL_w (2.3a)
Vxﬁu — V;JJ == QXVX7“Q;+H, Xle — X;Jl = Qxxx7uQ;l;, (23b)

whereVy ; is defined on a linkx,x+ €f1) like Uy ,, andXy, on a site. To define the decomposition for the
minimal option, a color fieldhy = hkAK/2 (€ G/H, H =U (N —1)), is introduced as a site variable, whare
is the Gell-Mann matrix, andk (k= 1,..,N?— 1) is a component of a unit vector. The color field is transformed
by an independent gauge transformai@ne SU(N) as hy — Oxh,OY.

The decomposition is determined by solving the defining equaiihns|

1
Df; V]hy = : (Vx,uhx+u - thx,u) =0, (2.4a)
o =e T MNexp(—ia’h, i 57 alul)) =1, (2.4b)

which corresponds to the continuum version of the decompositjgix) = 7, (X) + 2 (X):
Du[7]h(x) =0, tr(h(x) Zu(x)) = 0. (2.5)

Note thatgy is a parameter undermined from equati@r§). The defining equation can be solved exactly, and
the solution is given by

N2 —2N 42 2IN-1 B B
LXaIJ - Tl—i_ (N - 2) ( ) (hX+UX7“hX+IJUX7I_}) +4(N - 1) hXUXv“hX""“UXJ.}’ (2-6&)
-1
Ly = <m> L s (2.6b)
Xxu = tl,u(dei(ﬁx,u))lm M (2.6¢c)
Viu = X;r,uux,u = gxlA—x,qu,,u (de(Ex,u))_l/N (2.6d)

Thus, in order that the theory written in terms of new variables is equipollent to the original YM theory,
i.e., the symmetry extended by introducing the color fi&ld(N)q x [SU(N)/U (N — 1)]o must be reduced to
the same symmetry as the original YM theory, i%J(N)q_e, we introduce the reduction condition that a set
of color fields{hy} is determined by minimizing the functional

Frea. = 3 ((DEIUINK) (D5 VTN ") /17 (), 2.7)

which is an extension of the nMAG condition 8U(2) case.

3. New variables and magnetic monopoles in the view of NAST

Following the papers/][i8], let us consider the Wilson loop in terms of the new variables. By inserting
the complete set of the coherent stég A) at every site on the Wilson lodp, 1 = [ |&x, A)du(éx) (A, éx],
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we obtain

WelU] =tr Uy = du(éx A, Ex U [ & s N
[ ] <<X,XD>EC 7u> /xll IJ( )<X.,X-I~:1|>ec< ‘ IJ| +U >

= [ TeuE0 ] (A (6% (6Nennn) IN) (3.1)

+uU>eC

where we have usef,&, = 1. For the stability group ofl, the 1st defining equatio@44) is rewritten as
Vi —Vauhwen =0 <= [ENV, & 0 A] = &Ml € A, (3.2)
that implies thatA) is eigen state o:fjvwfxw ;
(EVipxin) IN) = [N E?, €2 = (N ENV &y IN) = (N, &l Vi | & i ) - (3.3

ThenW[U] is rewritten to

V\b[u] = / |_| du(EX)p[ng] I_l </\76X|VX,[J ‘EX+IJ7/\>7 (34)
v <x>eC <XX+U>eC

p[xif] = |_| </\>EX|XX,IJ |€X7/\> (35)
<x>€C

By substituting theXy , = 1— ige 2, (X) + O(£2) we obtainp[X; &] = 1+ O(e?), since

(A & X | Ex ) = tr(Xoep) /tr(L) + 2tr (X uhy) = 1+ 2igetr( 2 (x)h(x)) + O(€?)
=1+0(£?), (3.6)

where we have used the 2nd defining equation in the continuum versid, ()h(x)) = 0. Therefore, we
obtain

WUl = [ () ] (A &0V [6eon ) =) (3.7)

+u>eC

From the non-Abelian Stokes theorem, Wilson loop along the @aghwritten to area integral oB :C = 0
(in the continuum limit)¥):

ds}WF,Nm) . (3.8)

S C=0Z

We[] = tr {Pexp (igfdxﬂ%(x))} Jtr(1) = /duz(f)exp(—ig
C

where”},(x) is defined by

Z(NN Y (00, [0 (0] +i912(NN Y h(x, 9,0 ()] (3.9)

Therefore, it turns out that the defining equati@4€ and R.4k) give the decomposition which repro-
duces “Abelian” ¥) dominance for the Wilson loop operator on a lattice even with a finite lattice spacing
£, We[U] =constWe V], and we can identify th&y , in eq2.2) with 7,(x), eqB.8).

Thus, by using the Hodge decomposition,3€) is further rewritten into

Welor] = /du:(é)exp[igwNzg,l<k,zz>+ig\/“2‘,f<j,Nz>] (3.10)

4

PalX) = () —
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W[R;T] = exp(-V(R;T)) for 24% lattice

V(R;T)=T*V/(R)+(aa*R "+ bb + cc/R)+(a0*R + b0 +CO/R)/T
V(R) = a*R+b+c/R

16

14

Ot = (0.161)?
oy =(0.177)7
1.2 roy =(0.145) %

oyloes= 1.21
Oy/Gyes = 0.812

=6.2)

0.8

V(R)a(p

0.6
VYRT=DT i
V(RIT=8)IT
1 VRT=T s
VyRT=NT e
Vy(RiT=8)/T
Vy(RIT=9)/T 1+

021 }:// Vy(R) ——
/ V(R
o bt ‘ ‘ ‘ L vaipssalR) —

Rla(=6.2)

04 |

Figure 1: The conbinational plot of the quark—anti-quark inter potential. (from above to b&¢0R)T) andV(R) of
the Wilson loop forSU(3)-YM field (Wgt)[Ux]), and ones for restriced (2)-part (Wr1)[Viu]), andV (R) for the
magnetic monople pa(t/\l(RT)[kX,,,]), respectively. The static potentM[(R) is represented by the bold lines.

wherek and j are gauge invariant and conserved curd@nt= 0 = Jj defined by

k:=&*F =*dF, =5 :=0"0sA7 L, (3.11a)
j := OF, Ns 1= 805 A 1, (3.11b)

with A:=d&+6d and O (x) := [; d?S*V(x(0))8P (x—x(a)). Thus, magnetic monopole current on a lattice
is calculated from the decomposed variable as

Vi Vhe o Videw Vol = EXD(—TG.Z [V u ()] av) = exp(—ig&fi he), (3.12)
1 2
OEV = — al’g Tr|:<31_\/§hx> VXauVX+H~VVXtrV,[JVXTV:| 5 (313)
1

It should be notice thak, is a gauge invariant non-Abelian magnetic monopole, since it is defined from the
plaquet of the field/ , , which is an element of the non-Abelian stability gradp=U (2).Thus, on a lattice

the Wilson loop by magnetic-monopole part is giverMigyky ;] = exp(—ige\/gzxﬁu kx,“EX,H) .

4. Lattice data

We have performed the numerical simulation. The sets of configuraidps} for the standard Wilson
action are generated by using the standard pseudo heat bath method. For a given configuyatiothe
color field{hy} is determined by solving the reduction condition minimizing the function@.éj(Thus, new
variables{X, ,, Vx , } are obtained as the decomposition by using26sj-(2.60).

First, we study the gquark—anti-quark potential from the Wilson loop average. Here, we use the fitting of
the Wilson loop Rx T rectangle) average with the two-variable functibfR, T );

(WrT)V]) =exp(-V(RT)), (4.1a)
V(R,T) =T X V(R) + (a1R+ b1+C1/R) + (a2R+ b2+Cz/R)/T, (4.lb)
V(R) =0R+b+c/R (4.1c)
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Figure 2: Two point-correlation functionsh(x)hB(y)) (A,B=1,2,...,8) measured g8 = 6.2 on 24" lattice, using 500
cofigurations in the Landau gauge. The left panel shdws B) and the right A # B).

and the static potential is extracted by the extrapolated funcdoR) = — limy_,c % log <V\/(R,T)[UX,“]>. Figl1
shows the combinational plot of the quark—anti-quark potential, i.e., from upper to W&, T) (T =7,8,9)
andVy (R) from the SU(3) Wilson loop averagQV\/(R’T)[Uw]), W(RT) (T =7,89) andW (R) from the
restrictedJ (2)-part (Wr ) [Viu]) , andVi(R) from the magnetic-monopole paftVig 1) [ky.]), respectively.
The potentials\y (R) (blue solid line),Vy (R) (sian solid line) and4, (R) (red solid line) show the good
agreement of the string tension, i.e., “Abalian”-dominance (or restridtgj-dominance ) of 85-90%, and
non-AbelianU (2) magnetic-monopole dominance of 75%

Second, we study the correlation functions for new variables, where we have adopted the Landau gauge for
the original YM field. We have checked the one-point function vani§%$ =+0.002=20(A=1,2,..,8).
Figl2 shows two-point correlation function of color field. The glol&(3) color symmetry is indicated,
(MA(x)hB(y)) = D(x—y) 3. The left panel of Fig@® shows the two-point correlations of new variab{é (0) (X)),
(Zu(0)2u(x)) and that of the original YM field .7, (0).«7, (x)). This indicates the restriced variabig(x)-
dominance in the sense that the correlation functiorf,gfx) behaving just as that of the YM field/,(x),
dominates in the long-range. While the correlation functio?gf(x), SU(3)/U (2) variable, dumps quickly.
For field 2}(x), we can introduce a mass terfy, = —3MZtr.21(x) 2 ,1\(x), since Xy, transforms ad-
jointly under gauge transformation, see/28t). The right panel of Fi® shows rescaled propagator for
Zu(x): r¥2DXX(r), r = |x|. The gauge boson propagaff(x—y) is related to the Fourier transform of the
massive propagataBy (x—y) = [ (‘2’;‘§4 ekx-Y)DXX(k), and the scalar type of propagator as functishould
behave for largd/x|x—y| as

d*k dkix-y) 3 3VM e My

~ . 4.2

DX(x~y) = (Xu(%u(y) = [
Therefore, the mass parametdy can be measured as the dumping factor réf2DXX(r), and we obtain
My = 2.4, /Ophys= 1.1GeV. This value should be compared with the result in MA gauge.

5. Summary and discussions

We have given a new description of the YM theory on a lattice, which gives an efficient framework to
explain quark confinement based on the dual superconductivity picture in the gauge independent manner. In
the implication of the non-Abelian Stokes’ theorem, we have shown the minimal option of change of variables
can extract the relevant fields ( the restricted part) the quark—antiquark confining potential of the fundamental
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Figure 3: (Left) The correllators as function of distans measured g8 = 6.2 on 24* lattice, using 500 cofigurations
in the Landau gauge.: (from above to blelo{), (0)¥ (x)), {,(0)# (X)), {2 (0)Z (X)). (Right) The rescaled two-
point correlator for2}, : r¥/2DXX(r).

representation. By performing the numerical simulation, we have compare the confining potential from;three
types of Wilson loop averages, original YM field, restricté?)-part and non-Abelian magnetic monopole
part, and confirmed restrictédi(2)-dominance and magnetic monopole dominance.
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