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Recently we have proposed a new reformulation of Yang-Mills (YM) theory based on new variables on a

lattice by extending the Cho-Faddeev-Niemi-Shabanov decomposition. Our reformulation allows options

discriminated by the stability group̃H of the gauge groupG. WhenH̃ agrees with the maximal torus group

H̃, it reduces to a manifestly gauge-independent reformulation of the conventional Abelian projection in the

maximal Abelian gauge. Within this framework, a non-Abelian Stokes theorem enables us to express the

Wilson loop operator in the fundamental representation by the “Abelian" variable extracted in association

with the stability group in the minimal option, and to rewrite the Wilson loop operator using a non-Abelian

magnetic monopole defined in a manifestly gauge-independent way. ForG= SU(3), two options are possible:

minimal one withH̃ = U(2) and maximal one with̃H = U(1)×U(1). In this talk we summarize the results

of Monte Carlo simulations for SU(3) in the minimal option. Especially, we compare three Wilson loop

averages defined by the “Abelian" variable, the monopole part and the original YM field. We confirm that the

quark–antiquark confining potential is reproduced by the “Abelian" variable (“Abelian" dominance), and that

the string tension is reproduced by the non-Abelian magnetic monopole (magnetic monopole dominance).

Moreover, we mention the behaviors of correlation functions for new variables.
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“Abelian" dominance and magnetic monopole dominance in SU(3) YM theory Akihiro Shibata

1. Introduction

The dual superconductivity picture is a promising mechanism for quark confinement. In this picture, the
magnetic monopole plays an important role for quark confinement. It is known that the string tension of the
Abelian part and the monopole part in Yang-Mills (YM) fields reproduce the original one, which is respectfully
called Abelian dominance and monopole dominance in the string tension. In the other approach, the center
vortex can explain the string tension. However, such dominances have been observed only in the special gauges
such as the maximal Abelian (MA) gauge or the maximal center gauge, whereas this is not the case in other
gauges.

We have given a new description of the YM theory on a lattice, which is expected to give an efficient frame-
work for explaining quark confinement based on the dual superconductivity picture inthe gauge independent
manner. In theSU(2) YM theory, it is constructed as a lattice version of the Cho-Faddeev-Niemi-Shabanov
(CFNS) decomposition[2] in a continuum theory[3][4][5], and in theSU(N) YM theory (N ≥ 3) we have the
reformulations discriminated by the stability groupH̃ of gauge groupG = SU(N) [6].

In the SU(2) case, we have an unique option with the stability groupH̃ = U(1). While in theSU(3)
case, we have two options: (i) the maximal one with the stability subgroupH̃ = U(1)×U(1), which is the
gauge-independent reformulation of the Abelian projection represented by the conventional MA gauge, (ii) the
minimal one with the stability group̃H = U(2), which is a new type of formulation and derives a non-Abelian
magnetic monopole [7].

ForSU(2) case, in fact, our numerical simulation demonstrated that the gauge-invariant magnetic monopoles
constructed reproduce the string tension [4], and that “Abelian” dominance holds, that is, the Wilson loop by
using the decomposed “Abelian part” reproduces the string tension in the quark-quark static potential [11].
While in the Landau gauge, we have shown that the infrared “Abelian" dominance in the propagator, i.e., the
extracted "Abelian" propagator is dominant in the infrared region[5]. For SU(3) case, applying this frame-
work, we have demonstrated the numerical simulations for the maximal option in the lattice2007 [9], and for
the minimal option in the results lattice2008 [10].

In this talk, we apply this method to investigate the dual superconductivity picture. In what follows,
restricting to the minimal option forSU(3) YM theory. We summarize the result of the lattice formulation.
By combining non-Abelian Stokes’ theorem (NAST) with the decomposition, we show the decomposition can
extract the dominant degrees of freedom that are relevant to quark confinement in the Wilson criterion in such a
way that they reproduce almost all the string tension in the linear inter-quark potential. It should be noticed that
for the Wilson loop for quark in the fundamental representation, the relevant part of YM is decomposed by the
minimal option, not the maximal option. Then, by using the Hodge decomposition, we can define non-Abelian
magnetic monopoles from the decomposed relevant part in the gauge invariant manner.

We perform the numerical simulations to investigate, speaking in conventional sense, “Abelian” domi-
nance and magnetic monopole dominance as was carried out in theSU(2) case. Since the relevant part of YM
field for confinement corresponds to the stability groupH̃ =U(2), we may call restrictedU(2)-dominance and
non-Abelian magnetic monopole dominance inSU(3) YM theory.

2. New variables on a lattice

We summarize the new description of theG = SU(N) (N = 3)YM theory on a lattice. The YM field
Ax′,µ is represented as a link variable

Ux,µ = exp

(
−ig

∫ x+µ̂ε

x
dxµAµ(x)

)
= exp

(−igεAx′,µ
)
, (2.1)
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which is supposed to be decomposed into the product of new variables,Xx,µ , Vx,µ ∈ SU(N),

Ux,µ = Xx,µVx,µ , Vx,µ = exp
(−igεVx′,µ

)
, Xx,µ = exp

(−igεXx,µ
)
, (2.2)

such that the decomposed variables are transformed by a full gauge transformationΩx ∈ SU(N):

Ux,µ →U ′
x,µ = ΩxUx,µΩ†

x+µ , (2.3a)

Vx,µ →V ′
x,µ = ΩxVx,µΩ†

x+µ , Xx,µ → X′x,µ = ΩxXx,µΩ†
x, (2.3b)

whereVx,µ is defined on a link〈x,x+ εµ̂〉 like Ux,µ , andXx,µ on a site. To define the decomposition for the
minimal option, a color field,hx = hk

xλ k/2 ( ∈G/H̃, H̃ = U(N−1)), is introduced as a site variable, whereλ k

is the Gell-Mann matrix, andhk
x (k= 1, ..,N2−1) is a component of a unit vector. The color field is transformed

by an independent gauge transformationΘx ∈ SU(N) ashx → ΘxhxΘ†
x.

The decomposition is determined by solving the defining equations[1],

Dε
µ [V]hx =

1
ε

(
Vx,µhx+µ −hxVx,µ

)
= 0, (2.4a)

gx = e−2πqx/N exp(−ia(0)
x hx− i ∑3

i=1a(l)
x u(l)

x ) = 1, (2.4b)

which corresponds to the continuum version of the decompositionAµ(x) = Vµ(x)+Xµ(x):

Dµ [V ]h(x) = 0, tr(h(x)Xµ(x)) = 0. (2.5)

Note thatgx is a parameter undermined from equation (2.4a). The defining equation can be solved exactly, and
the solution is given by

Lx,µ =
N2−2N+2

N
1+(N−2)

√
2(N−1)

N

(
hx +Ux,µhx+µU−1

x,µ
)
+4(N−1)hxUx,µhx+µU−1

x,µ , (2.6a)

L̂x,µ =
(√

Lx,µL†
x,µ

)−1

Lx,µ , (2.6b)

Xx,µ = L̂†
x,µ(det(L̂x,µ))1/Ng−1

x , (2.6c)

Vx,µ = X†
x,µUx,µ = gxL̂x,µUx,µ

(
det(L̂x,µ)

)−1/N
(2.6d)

Thus, in order that the theory written in terms of new variables is equipollent to the original YM theory,
i.e., the symmetry extended by introducing the color field,SU(N)Ω× [SU(N)/U(N−1)]Θ must be reduced to
the same symmetry as the original YM theory, i.e.,SU(N)Ω=Θ, we introduce the reduction condition that a set
of color fields{hx} is determined by minimizing the functional

FRed.= ∑x,µ tr
((

Dε
µ [U ]hx

)(
Dε

µ [U ]hx
)†

)
/tr(1) , (2.7)

which is an extension of the nMAG condition inSU(2) case.

3. New variables and magnetic monopoles in the view of NAST

Following the papers [7][8], let us consider the Wilson loop in terms of the new variables. By inserting
the complete set of the coherent state|ξx,Λ〉 at every site on the Wilson loopC, 1 =

∫ |ξx,Λ〉dµ(ξx)〈Λ,ξx|,

3
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we obtain

WC[U ] = tr

(
∏

<x,x+µ>∈C

Ux,µ

)
=

∫
∏
x∈C

dµ(ξx) ∏
<x,x+µ>∈C

〈Λ,ξx|Ux,µ
∣∣ξx+µ ,Λ

〉

=
∫

∏
x∈C

dµ(ξx) ∏
<x,x+µ>∈C

〈Λ|(ξ †
x Xx,µξx

)(
ξ †

x Vx,µξx+µ
) |Λ〉 , (3.1)

where we have usedξxξ †
x = 1. For the stability group of̃H, the 1st defining equation (2.4a) is rewritten as

hxVx,µ −Vx,µhx+µ = 0 ⇐⇒ [
ξ †

x Vx,µξx+µ , H̃
] ⇐⇒ ξxVx,µξ †

x+µ ∈ H̃, (3.2)

that implies that|Λ〉 is eigen state ofξ †
x Vx,µξx+µ :

(ξ †
x Vx,µξx+µ) |Λ〉= |Λ〉eiφ , eiφ := 〈Λ|ξ †

x Vx,µξx+µ |Λ〉= 〈Λ,ξx|Vx,µ
∣∣ξx+µ ,Λ

〉
. (3.3)

Then,WC[U ] is rewritten to

WC[U ] =
∫

∏
<x>∈C

dµ(ξx)ρ[X;ξ ] ∏
<x,x+µ>∈C

〈Λ,ξx|Vx,µ
∣∣ξx+µ ,Λ

〉
, (3.4)

ρ[X;ξ ] := ∏
<x>∈C

〈Λ,ξx|Xx,µ |ξx,Λ〉 (3.5)

By substituting theXx,µ = 1− igεXµ(x)+O(ε2) we obtainρ[X;ξ ] = 1+O(ε2), since

〈Λ,ξx|Xx,µ |ξx,Λ〉= tr(Xx,µ)/tr(1)+2tr(Xx,µhx) = 1+2igε tr(Xµ(x)h(x))+O(ε2)

= 1+O(ε2), (3.6)

where we have used the 2nd defining equation in the continuum version, tr(Xµ(x)h(x)) = 0. Therefore, we
obtain

Wc[U ] =
∫

∏
x∈C

dµ(ξx) ∏
<x,x+µ>∈C

〈Λ,ξx|Vx,µ
∣∣ξx+µ ,Λ

〉
= WC[V]. (3.7)

From the non-Abelian Stokes theorem, Wilson loop along the pathC is written to area integral onΣ :C = ∂Σ
(in the continuum limit)[7]:

WC[A ] := tr


Pexp


−ig

∮

C

dxµAµ(x)





/tr(1) =

∫
dµΣ(ξ )exp

(
−ig

∫

S: C=∂Σ
dSµνFµν [V ]

)
, (3.8)

whereVµ(x) is defined by

Vµ(x) = Aµ(x)− 2(N−1)
N

[
h(x),

[
h(x),Aµ(x)

]]
+ ig−12(N−1)

N

[
h(x),∂µh(x)

]
. (3.9)

Therefore, it turns out that the defining equation (2.4a) and (2.4b) give the decomposition which repro-
duces “Abelian” (V) dominance for the Wilson loop operator on a lattice even with a finite lattice spacing
ε, WC[U ]∼=const.WC[V], and we can identify theVx′,µ in eq(2.2) with Vµ(x), eq(3.8).

Thus, by using the Hodge decomposition, eq(3.8) is further rewritten into

WC[A ] =
∫

dµΣ(ξ )exp

[
ig

√
N−1
2N

(k,ΞΣ)+ ig

√
N−1
2N

( j,NΣ)

]
(3.10)
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Figure 1: The conbinational plot of the quark–anti-quark inter potential. (from above to below)V(R,T) andV(R) of
the Wilson loop forSU(3)-YM field

〈
W(R,T)[Ux,µ ]

〉
, and ones for restricedU(2)-part

〈
W(R,T)[Vx,µ ]

〉
, andV(R) for the

magnetic monople part
〈
W(R,T)[kx,µ ]

〉
, respectively. The static potentialV(R) is represented by the bold lines.

wherek and j are gauge invariant and conserved currentδk = 0 = δ j defined by

k := δ ∗F = ∗dF, ΞΣ := δ ∗ΘΣ∆−1, (3.11a)

j := δF, NΣ := δΘΣ(x)∆−1, (3.11b)

with ∆ := dδ +δd and Θµν
Σ (x) :=

∫
Σ d2Sµν(x(σ))δ D(x−x(σ)). Thus, magnetic monopole current on a lattice

is calculated from the decomposed variable as

Vx,µVx+µ,νV†
x+ν ,µV†

x,ν = exp(−igF [Vµ(x)]µν) = exp(−igΘ8
µνhx′), (3.12)

Θ8
µν =−argTr

[(
1
3

1− 2√
3

hx

)
Vx,µVx+µ,νV†

x+ν ,µV†
x,ν

]
, (3.13)

kx,µ :=
1
2

εµναβ ∂νΘ8
αβ . (3.14)

It should be notice thatkµ is a gauge invariant non-Abelian magnetic monopole, since it is defined from the
plaquet of the fieldVx,µ , which is an element of the non-Abelian stability groupH̃ = U(2).Thus, on a lattice

the Wilson loop by magnetic-monopole part is given byWC[kx,µ ] = exp
(
−igε

√
1
3 ∑x,µ kx,µΞx,µ

)
.

4. Lattice data

We have performed the numerical simulation. The sets of configurations{Ux,µ} for the standard Wilson
action are generated by using the standard pseudo heat bath method. For a given configuration{Ux,µ}, the
color field{hx} is determined by solving the reduction condition minimizing the functional eq(2.7). Thus, new
variables{Xx,µ , Vx,µ} are obtained as the decomposition by using eqs(2.6a)-(2.6d).

First, we study the quark–anti-quark potential from the Wilson loop average. Here, we use the fitting of
the Wilson loop (R×T rectangle) average with the two-variable functionV(R,T);

〈
W(R,T)[V]

〉
= exp(−V(R,T)), (4.1a)

V(R,T) := T×V(R)+(a1R+b1 +c1/R)+(a2R+b2 +c2/R)/T, (4.1b)

V(R) = σR+b+c/R. (4.1c)

5
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Figure 2: Two point-correlation functions
〈
hA(x)hB(y)

〉
(A,B = 1,2, ...,8) measured atβ = 6.2 on244 lattice, using 500

cofigurations in the Landau gauge. The left panel shows (A = B) and the right (A 6= B).

and the static potential is extracted by the extrapolated function:V(R) =− limT→∞
1
T log

〈
W(R,T)[Ux,µ ]

〉
. Fig.1

shows the combinational plot of the quark–anti-quark potential, i.e., from upper to lower,VU(R,T) (T = 7,8,9)
andVU(R) from theSU(3) Wilson loop average

〈
W(R,T)[Ux,µ ]

〉
, VV(R,T) (T = 7,8.9) andVV(R) from the

restrictedU(2)-part
〈
W(R,T)[Vx,µ ]

〉
, andVM(R) from the magnetic-monopole part

〈
W(R,T)[kx,µ ]

〉
, respectively.

The potentials,VU(R) (blue solid line),VU(R) (sian solid line) andVU(R) (red solid line) show the good
agreement of the string tension, i.e., “Abalian”-dominance (or restrictedU(2)-dominance ) of 85-90%, and
non-AbelianU(2) magnetic-monopole dominance of 75%

Second, we study the correlation functions for new variables, where we have adopted the Landau gauge for
the original YM field. We have checked the one-point function vanishes

〈
hA

x

〉
= ±0.002∼= 0 (A = 1,2, ..,8).

Fig.2 shows two-point correlation function of color field. The globalSU(3) color symmetry is indicated,〈
hA(x)hB(y)

〉
= D(x−y)δ AB. The left panel of Fig.3shows the two-point correlations of new variables

〈
Vµ(0)Vµ(x)

〉
,〈

Xµ(0)Xµ(x)
〉

and that of the original YM field
〈
Aµ(0)Aµ(x)

〉
. This indicates the restriced variableVµ(x)-

dominance in the sense that the correlation function ofVµ(x) behaving just as that of the YM fieldAµ(x),
dominates in the long-range. While the correlation function ofXµ(x), SU(3)/U(2) variable, dumps quickly.
For field Xµ(x), we can introduce a mass termLMX = −1

2M2
x trX A

µ (x)X A
µ (x), sinceXx,µ transforms ad-

jointly under gauge transformation, see eq(2.3b). The right panel of Fig.3 shows rescaled propagator for
Xµ(x): r3/2DXX

µν (r), r = |x|. The gauge boson propagatorDXX
µν (x−y) is related to the Fourier transform of the

massive propagator,DXX
µν (x−y) =

∫ d4k
(2π)4 eik(x−y)DXX

µν (k), and the scalar type of propagator as functionr should
behave for largeMx|x−y| as

DXX(x−y) =
〈
Xµ(x)Xµ(y)

〉
=

∫
d4k

(2π)4eik(x−y) 3

k2 +M2
X

' 3
√

M

2(2π)3/2

e−Mx|x−y|

|x−y|3/2
. (4.2)

Therefore, the mass parameterMx can be measured as the dumping factor ofr3/2DXX
µν (r), and we obtain

MX = 2.4
√σphys= 1.1GeV. This value should be compared with the result in MA gauge.

5. Summary and discussions

We have given a new description of the YM theory on a lattice, which gives an efficient framework to
explain quark confinement based on the dual superconductivity picture in the gauge independent manner. In
the implication of the non-Abelian Stokes’ theorem, we have shown the minimal option of change of variables
can extract the relevant fields ( the restricted part) the quark–antiquark confining potential of the fundamental

6
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Figure 3: (Left) The correllators as function of distansr. measured atβ = 6.2 on 244 lattice, using 500 cofigurations
in the Landau gauge.: (from above to blelow)

〈
Vµ(0)V (x)

〉
,
〈
Aµ(0)A (x)

〉
,
〈
Xµ(0)X (x)

〉
. (Right) The rescaled two-

point correlator forXµ : r3/2DXX
µν (r).

representation. By performing the numerical simulation, we have compare the confining potential from three
types of Wilson loop averages, original YM field, restrictedU(2)-part and non-Abelian magnetic monopole
part, and confirmed restrictedU(2)-dominance and magnetic monopole dominance.
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