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The possibility of Lorentz symmetry breaking (LSB) hasatted considerable attention in re-
cent years for a variety of reasons, including the attraqiospect of the graviton as a Goldstone
boson. Though a number of effective field theory analyseadf phenomena have recently been
given it remains an open question whether they can take plaeunderlying UV complete the-
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limit. We apply techniques that have previously been usembteectly predict the formation of
chiral symmetry breaking condensates in this limit. Gelimrg such methods to other compos-
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possibility arises of condensates that 'lock’ internalhngixternal symmetries.
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The possibility of either explicit or spontaneous breakafid.orentz symmetry has received
considerable attention in recent years for a variety of ph@mological and theoretical reasons.
The idea of spontaneous breaking goes back to Bjorken [1]phioosed that the photon be inter-
preted as the Goldstone boson of such breaking; the samwéadeaaturally applied to the graviton
[2] soon afterwards. In fact, a Goldstone graviton offerather attractive prospect for a quantum
theory of gravity that evades the familiar difficulties ofamiizing the fundamental metric field of
General Relativity. This has been revived in recent yeard,raodern effective field theory treat-
ments of the resulting Goldstone modes and their low enartpractions have been performed
[3] - [4]. Such analyses assume that Lorentz symmetry bngaiccurs at some high (unification
or Planck) scale and proceed to examine the low energy coesegs. The central question then
is whether such breaking can take place in an underlyingrghebich is UV complete. It in-
deed appears to be very difficult to come up with an UV healtlogdeh where dynamical Lorentz
breaking takes place at weak coupling. This may be just aksivele this is naturally expected
to be a strong-coupling dynamics phenomenon. Here we exatnénquestion ir8J (N) or U (N)
lattice gauge theories in the strong coupling and laxgkmit. This, as it is well known, is a
model that gives a good qualitative depiction of all the basin-perturbative features of QCD-like
theories. We apply techniques that have previously beed taseorrectly predict the formation
of chiral symmetry breaking condensates in this limit [H], [8], generalizing such methods to
other composite operators. We employ naive massless fesmmighich automatically provide an
anomaly-free, chirally invariant model, and thus are weillexd for our purposes since the doubling
problem is irrelevant here - in fact, as it turns out, the nuegrees of freedom (color and flavor)
the better.

The lattice action with naive massless fermions is given by

S=3% BtUp+
p

b=(xm)

NI =

[BOOVHUL () P(x+ 1) — P+ YU @3] - 1)

We will be mainly concerned with expectations of the fogriy, wherel® may stand for any
of the Clifford algebra elements, suchlas= 1, I, = y*, or 'k = iy®y*, or some other choice.
Operators involving nearest neighbors (derivatives) aldb be considered below. We often write
formulas for general dimensiahbut are actually interested only th= 4.

Since the operatay(x)I A (x) is a fermion bilinear its expectation is related to the femmi
2-point function (full propagatort)Bz"z(x, y) = <w§(x)u7§(y)> in the limitx=:

<L[_I(X)|_AL,U(X)> = —tr [G(x,X)[] = —trp [G(x,X)[] 2)
with the second equality written explicitly in terms of thauge invariant quantitﬁ(x,x) =
treG(x,x). Here tr denotes trace over spinor and color (and flavorcesdiwhereas dr tr, de-
note traces over color and Dirac spinor indices, respdgtive

To investigate such expectations we add to the action amnekteourceK” which couples
to P(X)rAyY(x). One may more generally add a source &fK,x) of the formK = K1, where
1. denotes the unit matrix in color space akcan arbitrary (invertible) matrix in spinor space.
Coupling to a particular fermion bilinear then correspoitos particular form oK; e.g. K =
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knyy*, wherek an arbitrary number angj, an arbitrary unit vector, couples a source of magnitude
k and directiom, to gy .
We write the action (1) in the presence of the external sommoee concisely in the form

S=3 BtrlUp+ S P(x) Ay (U)Y(y) 3)
g Xy
where
Hxy(U) =Myy(U) +Kxy 4)
with
1 . _
Mxy(U) = > (VU (X) Syxip — VHU/I(X_ ) dyx—a] Ky =Koy=Klcdy. (5)

Note thatk andM are matrices in spinor and color space as well as in lattioedimate space.

In the strong coupling limi3 — 0 the plaquette term in (3) is dropped. The corrections due
to this term can be computed within the strong coupling eluskpansion, which, for sufficiently
small B, converges. Hence they do not produce any qualitative éanthe behavior obtained
below at — 0. SettingB = 0 in (3) then,G(x,X) is given by

1
[[DU]Detx# (U)
JIDU]Detfl1+ KM (U)] [[1+K M (U)K

= JIDU]Defl+ K M (U)] " @

G(xX) = [Ipujperr (U) £ HV) (6)

from which the expectation af(x)I"*@(x) in the presence of the source is obtained from (2).

We evaluate (7) in the hopping expansion. This amounts tarekpg (7) treatingV as the
interaction andK as defining the inverse ‘bare propagatdtyy = K11 &cy. The textbook ver-
sion of the expansion is the case when the source is a massiterr{ = ml,. Note thatK is
purely local, wherea#! has only nearest-neighbor non-vanishing eleméfys. ; = %VuUu(X)
andMyy_j = %VHUJ(X— f1). In the absence of the plaquette term integration over thgeéeld
results into non-vanishing contributions only if at leagbiM factors with equal (mod) number
of U andU ™'s occur on each bond.

The expansion of the%/X;(l(U) is represented by all paths starting and ending, athereas
that of the Detz (U) by all closed paths [7]. Consistent with the above condtramneach bond
resulting from theJ -integrations the connected graphs giving the expectéfipnaturally fall into
two classes: ‘tree graphs’ and ‘loop graphs’. The tree ggajoimsist of paths starting and ending at
x and enclosing zero area (cf. graphs on the |.h.s. in Fig.£)n@te in passing the well-known fact
(see e.qg. [7]) concerning the hopping expansion that threre@restrictions on how many times a
bond is revisited in drawing all such possible connectegphyga

Now, the set of tree graphs are the leading contributidd.ihoop graphs are down by powers
of 1/N relative to tree graphs [5]. Thus, the set of tree graphserhtipping expansion give the
largeN limit of the theory. The sum of all tree graphs attached istgrand ending at sit& then
constitute the full propagatds(x,x) in this limit.

The lowest order contribution is just the bare propagKt;},%. Next consider trees extending
only to the nearest neighbor (nn) sites. The simplest seehttas only one ‘trunk’ extending to any
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Figure1: Sum of: (a) 2-trunk; and (b) 3-trunk trees

Figure 2: The self-consistent equation for the sum of trees attaahsilex, i.e. G(x, X)

one of the nn-sites tg. But one also has nearest-neighbor trees wittunks, where each trunk
extends only to any one of the 2in sites. Starting from these nn trees, the full set of tréestzed
to the pointx can now be grouped as follows [5]. One simply observes theafuthset of ‘1-trunk’
trees aix is obtained by attaching to every 1-trunk nn-treex atl possible trees at the sitet- 1.
But the set of all trees attachedxat i comprise the full propagatd®(x+ [i,x+ f1). Similarly,
the full set of ‘n-trunk’ trees ax is generated by attaching to every n-trunk nn-treeat possible
trees at each site+ [ij, i.e. the full propagato&(x+ fij,x+ ), for j = 1,...,n. Fig.1 represents
this diagrammatically fon = 2 andn = 3. The set of all trees is now recovered by summing over
all full m-trunk trees including the zeroth-order= 0 (no bottom-trunk), i.e. the bare propagator
term. The resulting equation, depicted graphically inEigrovides now a self-consistent equation
for G(x,x) in the largeN limit.

With constant (position-independent) soukcgranslation invariance implies th&(x, x) is in
factx-independent. Using the explicit expressions (5), and peopagatoK 11, the r.h.s. in this
equation may be evaluated. One finds

© (1), ] .
G = ~ K G K 8
1c+1n;[ R Ac ®)
_ 1 -1
- [Klﬁ—zy“Gyu] . ©)

The hopping expansion which, in the laiydimit, gave (8) converges for sufficiently largi||.
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The resumed expression (9), however, can be continuedlfidt & particular, one is interested in
possible solutions to (9) fd£ — O.

(9) was obtained by resummation of the (infinite) set of legdiraphs in the larghl limit.
An alternative approach is the direct construction of therexponding effective action defined
as the Legendre transforﬁ(G) of the free-energy w.r.t. the sourée Since here we deal with
composite, viz. bilinear fermion operators, this is theefifze action for composite operators [8].
It is in fact quite straightforward to apply the general eeg®ion for the effective action given in
[8] to the theory (3) in the strong coupling limit. Variatiaf the resulting effective actioﬁ(G)
again yields (9), as expected. This is in fact a rather mdreieit and elegant way of arriving at
the result: onlyone 2-PI graph need be evaluated in the lakgBmit.

We also note in passing that still another approach is thaigsed in [6]. This approach,
however, is mathematically inherently ambiguous and carstiime exercised in applying it. If this
is done it gives the same qualitative results but in a mucajtkeer and inefficient manner.

It is now easy to examine particular solutions of (9) that@oked up by appropriate choice
of the sourceK. (We will not examine here the most general solution.) Ircales at larggK||
the solution reproduces, of course, the perturbative mgpexpansion solution. We are, however,
interested in the vanishing-source limit. In the case oscurce, the solution 5 = gs(K)1, 1,

and one findgs(0) = \/g . For the scalar condensate one thus gets

(@0909) = —Ns\/g , (10

whereS = trl; is the number of spinor components. This reproduces thdt iagB]. For vector
or axial vector sourc& = k(I" - n)1., the solution is of the fornG = g(k)(I - n)~11., wherer#
stands for eithef{, or I'k. (Note that in either case one his-n)~! = (I -n).) One now finds

ov(0) =i,/2/(d — 2) whereagia(0) = \/2/(d — 2). For the axial vector condensate one thus gets

(FOiY w0) = NSy g (11)

In the vector case, however, the resulting expectation éginary. Indeed, the solution turns com-
plex for small sourc&. This would seem to indicate that no vector condensate lacfoems. But
this doesnot mean that other condensates induced in the presence ofaa seatce do not survive
as the source is turned of. Consider the opergto) y* o, Y(x), whereo,, = %[VK, Yal. This
condensate, which is of interest for LSB-induced gravigotties, is also induced in the presence
of a vector source. In this case in the vanishing-source tmé gets

(#0900 w) = NSy [ [ekm —gfni]. 12

Other chiral or Lorentz symmetry-breaking condensatesing more complicated operators
such as lattice nearest-neighbor (continuum derivatiwaptings may also be induced. The (gauge
invariant) operator

Ovu(X) = PRWUL X)W (x+ 1) — PORU L (x— (x— 1), (13)
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(VU = C===0

Figure 3: Graph for the expectation after attaching full trees; tharslines denote the different directions
of theyY, y# factors in it.

in particular, is of special interest. In its continuum liriti corresponds to the tensor operator
Y(X)y’ duy(x), for which a non-vanishing condensate is a natural stapigt for a theory of the
graviton as a Goldstone boson [3]. In the presence of a v@ataixial vector) source (13) acquires
a non-zero expectation. The full expectation is obtaineatgching the full set of trees, i.e. full
propagatorss at the sitesx andx-+ I giving the graph shown in Fig.3. This is easily evaluated and
in the limit of vanishing source yields

1
(Ou) = ~ g NS[Zn - gn (14)

(14) is a non-vanishing tensorial condensate proportional tog,,, i.e. anSO(4)-breaking
(Lorentz-breaking) condensate. (A tensorial condensaipagptional to the metric tensor is not
Lorentz-breaking.) Different patterns of breaking, prtir complete, can be obtained by includ-
ing fermionsy' (x) of different flavori coupled to vector sources of different orientat'ru#h If NF
flavors are present (14) becomes

1 2 ..
<ovu> :ENNFS[gV“—N—FZn'Vn'“] . (15)

The strongly coupled lattice model considered here praviddact an explicit realization of the
scenario envisioned in [3]. One may, for contrast, also idemghe effect of the scalar condensate
on (13). Repeating the calculation with a scalar sourceaciml the vector source one now gets
that<OV“> is proportional tay,,. Thus, as expected, no Lorentz symmetry breaking is indirced
this case.

When internal (global) symmetry groups are present, aduanplossibility arises, i.e. conden-
sate formation that 'locks’ space-time and internal synmimgt This possibility can be equally well
explored within our strong coupling lattice gauge models.

The most straightforward example is provided by taking thiernal symmetry to be a copy of
the (Euclidean) space-time symmetry, i.e. an inte8tld) group with the fermions transforming
as Dirac spinors under it. Denoting the gamma matrices@otirthe internal space /', consider
the operatony(x)y" (iysy ) @(X) involving an internal vector and an external axial vectoonN
vanishing vev’s of such fermion bilinears can lead to logdietween the corresponding groups. To
compute such a vev we again first introduce appropriate esuifferent fermion flavors can be
coupled to different sources. th= 4 take the number of flavors to be (a multiple of) four coupled
to corresponding sources along the elemeﬁ}sand n?i‘>, i=1,...,4, of an orthonormal tetrad set
in external and internal space, respectively. Proceedsrigefore, either by tree resummation, or,
more efficiently, by direct construction of the effectivdian, one now, in the limit of vanishing
sources, obtains the result

(FOV () W(X) ) = ~NS S Wy, = ~NS). (16)
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(16) represents complete locking of the internal and eatesymmetry, i.e. breaking to the diagonal
SO(4) subgroup of the original symmetry80(4) x SO(4); — SO(4)p. The condensate remains
invariant only under simultaneous equal internal and ezlaotations.

The obvious question arises: how can such locking work inkgliveki space? There appear
to be two possible choices. One choice is the standard Wigkioa where the external group
gets decompactified t80(3,1) whereas the internal group remains compact. The condensate
(16) is now invariant only under simultaneo89(3) (spatial) rotations, i.eS0(3,1) x SO(4); —
SO(3)p. The second possibility is to define the passage to Minkosgskee to also involve a ‘Wick
rotation’ of the internal group decompactifying it. Fulcking then is preserved, i..e (16) remains
invariant undeiSO(3,1)p. The obvious difficulty now is that an internal non-compaaup, such
asS0(3,1), possesses only non-unitary finite-dimensional repragiens. This, of course, leads in
general to unitarity violation. The only way out is to take fiermions to transform under a unitary,
i.e. an infinite dimensional representation of the intenmad-compact group. For an internal group
the usual formalism applies whether one uses finite or iefitiinensional unitary representatidns.
The new feature implied by the use of an infinite dimensioapt@sentation is the infinite number
of components associated with the internal group indexs Ibltking mechanism may offer a novel
approach to a quantum gravity theory. At any rate, it wouldhlberesting to work out the effective
field theory for it at low energies.

It remains, of course, a matter of further investigation lamy of these various non-vanishing
condensates obtained in the strong coupling lattice géhegeryt models might actually be realized
in the continuum.
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IThus the problems of physical interpretation with respeqparticle spectrum and spin-statistics that plague the
use of infinite dimensional representations for external€htz) groups are not relevant in this context.



