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1. Introduction

This talk was given as a progress report summarizing our work on the perturbative gluon prop-
agator that has, in the meantime, published in Ref. [1]. This work is a continuation of Ref. [2] that
was focused on the ghost propagator. The Monte Carlo study of both propagators (for a recent dis-
cussion see [3]), which are closely related to each other by Schwinger-Dyson equations (SDE) [4],
has attracted much attention outside the lattice community by phenomenologists working in in-
frared QCD and hadron physics. For many reasons, the (covariant) Landau gauge propagators have
been the centre of interest. The importance for the confinement problem has been discussed in
Ref. [5].

Taken together, both propagators provide us with a definition and the momentum dependence
of the running coupling αs(q2) directly based on the ghost-gluon vertex. This has recently turned
out to be an interesting frame to accurately measure αs(Mz) from propagators [6, 7, 8].

A simple connection between the two propagators exists in the extreme infrared, powerlike in
a scaling and massive in a decoupling version. Only the latter is found on the lattice, while both
solutions can be accommodated in the SDE approach. Some ideas exist today [9] about how to
handle the Gribov ambiguity such that the scaling solution could eventually be reproduced on the
lattice.

In a wider sense, the effect of nontrivial vacuum structure (vortices, instantons) is mani-
fest [10, 11] also in the gluon propagator, in the intermediate momentum range around O(1 GeV)
where the SDE approach suffers from truncation ambiguities and where nonperturbative lattice cal-
culations are unrivalled. In order to understand the onset of nonperturbative effects, it is important
to approach this momentum range from high momenta within higher-order perturbation theory.
Some of us have started such a program a couple of years ago [12]. While ordinary diagrammatic
lattice perturbation theory soon gets too involved to be pursued, Numerical Stochastic Perturbation
Theory (NSPT, for a recent review see Ref. [13] and references therein), provides a powerful tool
to perform high-loop computations. One has to run coupled Langevin simulations on the lattice
and to perform the necessary limits: Langevin time step ε → 0, volume V → ∞ and lattice spacing
a→ 0.

The infinite-volume and continuum extrapolation part of the program has been satisfactorily
achieved in Refs. [2, 1], such that the otherwise difficult to access non-logarithmic contributions
became calculable. We refer the interested reader to these papers for more details about the tech-
nique of NSPT and the procedure to take the needed limits. The method to perform the V →∞ and
a→ 0 limits simultaneously has been outlined for the first time in Ref. [2] for the ghost propagator
and applied to the gluon propagator in Ref. [1]. There we have attempted to compare the pertur-
bative results summed to the presently known order with the results of Monte Carlo simulations.
In this short account of our work we concentrate on the method to extract all non-leading-log and
non-logarithmic coefficients of the gluon dressing function from NSPT data.

2. The gluon dressing function

Recalling that the gluon propagator has to be color-diagonal and symmetric in the Lorentz
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indices, its tensor structure in the continuum can be written as

Dab
µν(p) = δ

ab

[(
δµν −

pµ pν

p2

)
D(p2)+

pµ pν

p2
F(p2)

p2

]
, (2.1)

where the transverse part D(p2) and the longitudinal part F(p2) have been introduced. The latter
vanishes in the Landau gauge. The lattice counterpart Dab

µν(p(k)) 1 of Eq. (2.1) generally contains
more terms on the r.h.s. due to the lower symmetry. The quantity under study, surviving the
continuum limit, is

D(p(k)) =
1
3

4

∑
µ=1

Dµµ(p(k)) , (2.2)

where color indices are dropped from now on to ease the notation. Eq. (2.2) obviously corresponds
to the transverse propagator. In the following we use the nth-order dressing function J(n)(p) defined
as

J(n)(p) = p2D(n)(p(k)) . (2.3)

3. The non-logarithmic contributions to Z

In the RI’-MOM scheme, the relation between the bare dressing function J0(p,a,αRI′) and its
renormalized counterpart JRI′(p,µ,αRI′) is given by 2

J0(p,a,αRI′) = Z(a,µ,αRI′) JRI′(p,µ,αRI′) , (3.1)

with the renormalization condition JRI′(p,µ,αRI′)|p2=µ2 = 1 and with αRI′ = g2(aµ)/16π2. More
in detail, the objects in Eq. (3.1) can be perturbatively expanded as

Z(a,µ,αRI′) = 1+ ∑
n>0

α
n
RI′

n

∑
j=0

zRI′
n, j log j(aµ) , (3.2)

J0(p,a,αRI′) = 1+ ∑
n>0

α
n
RI′

n

∑
j=0

zRI′
n, j

(
1
2

log(ap)2
)j

, (3.3)

JRI′(p,µ,αRI′) = 1+ ∑
n>0

α
n
RI′

n

∑
j=0

zRI′
n, j

(
1
2

log(pµ
−1)2

)j

. (3.4)

By plugging the perturbative expansions above into Eq. (3.1) and by converting the renormalized
coupling into the bare one, α0 = Nc/(8π2β ), the bare dressing function can be written as

J0(p,a,β ) = 1+ ∑
n>0

1
β n

n

∑
j=0

J n, j log j(ap)2 , (3.5)

1 p(k) components are defined as pµ (kµ ) = 2πkµ/Lµ , with Lµ = aNµ the lattice size along direction µ and kµ ∈
[0,Nµ −1]. In what follows, the subscript µ on N and L will be dropped since simulations were performed on symmetric
lattices.

2 Formulae in this section closely mimic those in section 4 of [2] which we suggest the interested reader to consult.

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
9
1

NSPT study of the 3-loop gluon propagator in Landau gauge C. Torrero

where the coefficients J n, j are related to the zRI′
n, j’s in Eq. (3.2). As far as the logarithmic contribu-

tions are concerned, their coefficients depend on the anomalous dimension of the gluon field and
the β−function (see [14]). The purpose of this work is to compute the J n,0’s which are related to
the zRI′

n,0’s by

J1,0 = 0.03799544 zRI′
1,0 , (3.6)

J2,0 = 0.10673710 zRI′
1,0 +0.00144365 zRI′

2,0 , (3.7)

J3,0 = 0.375990 zRI′
1,0 +0.00811105 zRI′

2,0 +0.0000548523 zRI′
3,0 . (3.8)

4. The fitting procedure

We can isolate the nth−loop contribution in Eq. (3.5) (without power of β−n) and write

J(n)(p,a) = Jn,0(ap)+
n

∑
j=1

Jn, j log j(ap)2 , (4.1)

where, by recalling the existence of irrelevant lattice artifacts, Jn,0(ap) can be decomposed as

Jn,0(ap) = Jn,0 + cn,1(ap)2 + cn,2
(ap)4

(ap)2 + cn,3(ap)4 + . . . [(ap)m ≡∑
µ

(apµ)m] , (4.2)

where Jn,0 is the nth−loop constant we want to compute. Taking into account also finite-size effects,
Jn,0(ap) has to be replaced by Jn,0(ap, pL) with

Jn,0(ap, pL) = Jn,0(ap)+ [Jn,0(ap, pL)− Jn,0(ap)]≡ Jn,0(ap)+δJn,0(ap, pL) =

= Jn,0(ap)+δJn,0(0, pL)≡ Jn,0(ap)+δJn,0(pL) , (4.3)

where, in the last two steps, ap corrections on pL effects are assumed to be corrections on correc-
tions and have been neglected. Furthermore we assume that the point pmax corresponding to the
largest (ap)2 on the largest lattice size Lmax is such that δJn,0(pmaxLmax) = 0.

When treating pL contributions, it is useful to notice that, since pµL = pµaN = 2πkµ , any
given 4-tuple of integers (k1,k2,k3,k4) has the same finite-size corrections to Jn,0(ap) on different
lattice sizes. Therefore, the steps in data-analysis at any loop order n can be summarized as follows:

• a suitable window [(ap)2
min,(ap)2

max] is identified where a sufficient number of data points is
available on different lattice sizes;

• the logarithmic contributions are subtracted from the bare dressing function in order to get
Jn,0(ap, pL);

• Jn,0(ap, pL) is fitted according to the procedure sketched above: from Eq. (4.2) we compute
the desired Jn,0.

Obviously, only results stemming from stable fits have to be taken into account.
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5. Results

Figs. 1, 3 and 5 show an example of the fitting procedure outlined above: the black dots

2.2

2.4

2.6

2.8

3

3.2

3.4

0 2 4 6 8 10 12

(ap)2

χ2/d.o.f.=0.9562
1-loop

log subtracted data
no pL

no pL, H(4)
final fit 2.298(40)

Figure 1: 1-loop data vs. (ap)2: the different sets
of points stem from the various steps of the analy-
sis (see section 4).
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Figure 2: J1,0 results vs. χ2: the dotted blue line
is the average of the 10 blue points, the continuous
red one is the analytical result.
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Figure 3: Same as in Fig. 1 for 2-loop data.
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Figure 4: J2,0 results vs. χ2: see caption of Fig. 2.

stand for log-subtracted data, blue stars for data after finite-size effects have been removed while
red spots for data after further removal of hypercubic effects.

Loop order n 1 2 3
Jn,0 2.30(3) 7.92(12) 31.7(5)

Table 1: Results for the constant contributions to Z up to the third loop. Compare the 1-loop analytical
result J1,0 = 2.29368.

In general, there could be various fitting functions that fulfill the stability requirement men-
tioned at the end of section 4: the results we quote come from averaging the values obtained from
the fits with the 10 lowest χ2 at every perturbative order: Figs. 2, 4 and 6 contain these values
and their average with their errorbars. The final outcome of the analysis sketched in the above is
contained in Table 1.

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
9
1

NSPT study of the 3-loop gluon propagator in Landau gauge C. Torrero

30

32

34

36

38

40

0 1 2 3 4 5 6 7 8

(ap)2

χ2/d.o.f.=1.1085
3-loop

log subtracted data
no pL

no pL, H(4)
final fit 31.53(56)

Figure 5: Same as in Fig. 1 for 3-loop data.
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Figure 6: J3,0 results vs. χ2: see caption of Fig. 2.

Resumming the perturbative series for J0(a, p,β ) up to the third loop, we get

J3−loop(p,a,β ) = 1+
1
β

(
−0.24697 log(ap)2 +2.29368

)
+

+
1

β 2

(
0.08211

(
log(ap)2)2−1.48445log(ap)2 +7.93(12)

)
+ (5.1)

+
1

β 3

(
−0.02964

(
log(ap)2)3

+0.81689
(
log(ap)2)2

+

− 8.13(3) log(ap)2 +31.7(5)
)

,

which can then be converted to the RI’-MOM scheme by using the formulae of section 3.

6. Conclusion

In this work we presented an algorithm to compute the non-logarithmic parts of infrared di-
vergent quantities in NSPT in the infinite-volume limit using the example of the gluon propagator.
The one-loop result coincides with the well-known result from the diagrammatic approach [15].
The corresponding two- and three-loop finite constants have been computed for the first time.

We can use the dressing function obtained with NSPT at finite lattice sizes to investigate the
perturbative background of the corresponding Monte-Carlo calculated propagators. This has been
done in some detail in [1].
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