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We compute the matrix elements of the electromagnetic (EM) operator between kaon and pion

states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynamical

quarks (Nf = 2). The EM operator is renormalized non-perturbatively in the RI’/MOM scheme

and our simulations cover pion masses as light as 260 MeV and three values of the lattice spacing,

ranging from∼ 0.07 up to∼ 0.1 fm. At the physical point our preliminary result for theK → π
tensor form factor at zero-momentum transfer isf Kπ

T (0) = 0.42(2stat), which differs significantly

from the old quenched resultf Kπ
T (0) = 0.78(6) obtained by the SPQcdR Collaboration [1] with

pion masses above 500 MeV. We investigate the source of this difference and conclude that it is

mainly related to the chiral extrapolation of the quenched data. For the case of the tensor charge

of the pion we obtain the preliminary valuef ππ
T (0) = 0.200(14stat), which can be compared with

the resultf ππ
T (0) = 0.216(34) obtained atNf = 2 by the QCDSF Collaboration [2] using higher

pion masses.
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1. Introduction

Precision measurements of weak decays can constrain the parameters of the Standard Model
(SM) and place bounds on new physics (NP) models, such as supersymmetry. In particular, penguin
operators between kaon and pion states can place strong bounds on the CP-violating parameters in
the light quark sector.

In this contribution we present a lattice study of the electromagnetic (EM) operator, relevant
in the CP violating part of theK → πℓ+ℓ− semileptonic decays, performed using the gauge config-
urations generated by the European Twisted Mass Collaboration (ETMC) with Nf = 2 maximally
twisted-mass fermions. The EM operator involved in the weaks→ d transition is given by

QEM = s̄ Fµνσ µνd , (1.1)

whereFµν is the EM field tensor. Therefore its matrix element between kaon and pion states
involves the one of the weak tensor current, which can be written in terms of a single form factor,
f Kπ
T (q2), as

〈π0(pπ)|s̄σ µνd|K0(pK)〉= (pµ
π pν

K − pν
π pµ

K)

√
2 f Kπ

T (q2)

MK +Mπ
, (1.2)

whereqµ ≡ (pK − pπ)
µ is the 4-momentum transfer. Note that the mass factor(MK +Mπ)

−1 is
conventionally inserted in Eq. (1.2) in order to make the tensor form factor dimensionless.

Our simulations cover pion masses as light as 260 MeV and three values of the lattice spacing,
ranging from∼ 0.07 up to∼ 0.1 fm. At the physical point our preliminary result for theK → π
tensor form factor at zero-momentum transfer is

f Kπ
T (0) = 0.42 (2stat) (ETMC) , (1.3)

where the error is statistical only. Our finding (1.3) differs significantly from the old quenched
result f Kπ

T (0) = 0.78(6) obtained in Ref. [1] by the SPQcdR Collaboration with pion masses above
∼ 500 MeV. The reason is mainly due to the non-analytic behavior of the tensor form factorf Kπ

T (0)
in terms of the quark masses introduced by the mass factor(MK +Mπ)

−1 in the parameterization
(1.2). Such a behavior was not taken into account in Ref. [1] (see later on).

In the case of the degenerateπ → π transition, making use of the pion mass dependence
predicted by Chiral Perturbation Theory (ChPT) in Ref. [3],we obtain for the tensor form factor
f ππ
T (0), also known as the tensor charge of the pion, the preliminaryvalue at the physical point

f ππ
T (0) = 0.200(14stat) (ETMC) , (1.4)

which can be compared with the resultf ππ
T (0) = 0.216(34) obtained atNf = 2 by the QCDSF

Collaboration [2] using simulations at higher pion masses.

2. K → π results

We have performed the calculations of all the relevant 2-point and 3-point correlation functions
using the ETMC gauge configurations withNf = 2 dynamical twisted-mass quarks [4] generated
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at three values ofβ , namely the ensemblesA2−A4 at β = 3.8 (a≃ 0.103 fm),B1−B7 at β = 3.9
(a ≃ 0.088 fm), andC1 −C3 at β = 4.05 (a ≃ 0.070 fm). The pion massMπ ranges between
≃ 260 MeV and≃ 575 MeV and the sizeL of our lattices guarantees thatMπL is larger than
∼ 3.3. For each pion mass and lattice spacing we have used severalvalues of the (bare) strange
quark massms to allow for a smooth, local interpolation of our results to the physical value of
ms (see Ref. [5]). The calculation of the 2- and 3-point correlation functions has been carried
out using all-to-all quark propagators evaluated with theone-end-trickstochastic procedure and
adopting non-periodic boundary conditions which make arbitrarily small momenta accessible. All
the necessary formulae can be easily inferred from Ref. [6],where the degenerate case of the vector
pion form factor is illustrated in details. For each pion mass the statistical errors are evaluated with
the jackknife procedure.

The tensor current was renormalized non-perturbatively inthe RI’/MOM scheme in Ref. [7],
includingO(a2) corrections coming from lattice perturbation theory [8]. The numerical values used
in our analyses for the tensor renormalization constant areZT(MS,2 GeV) = 0.733(9), 0.743(5),
0.777(6) for β = 3.8, 3.9, 4.05, respectively.

At each pion and kaon masses we determine the tensor form factor f Kπ
T (q2) for several values

of q2 < q2
max= (MK −Mπ)

2 in order to interpolate atq2 = 0. Note that, because of the vanishing
of the Lorentz structure in Eq. (1.2), it is not possible to determine f Kπ

T (q2) at q2 = q2
max. In this

respect we take advantage of the non-periodic boundary conditions to reach values ofq2 quite close
to q2 = 0. The momentum dependence off Kπ

T (q2) can be nicely fitted either by a pole behavior

f Kπ
T (q2) = f Kπ

T (0)/(1−sKπ
T q2) (2.1)

or by a quadratic fit inq2

f Kπ
T (q2) = f Kπ

T (0) · (1+sKπ
T q2+cKπ

T q4) . (2.2)

The good quality of both fits is illustrated in Fig. 1, where the results obtained at two different
lattice volumes are also compared. It can clearly be seen that: i) finite size effects are well below
the statistical precision of our lattice points; ii) the results for f Kπ

T (0) (as well as those for the slope
sKπ
T ), obtained using the pole dominance (2.1), differ only veryslightly from those obtained via the

quadratic fit (2.2). Therefore in what follows we limit ourselves to the results for bothf Kπ
T (0) and

the slopesKπ
T obtained through the pole fit (2.1)

The values obtained forf Kπ
T (0) andsKπ

T depend on both pion and kaon masses. The depen-
dence on the latter is shown in Fig. 2 forf Kπ

T (0) at Mπ ≃ 435 MeV and it appears to be quite
smooth. Thus an interpolation at the physical strange quarkmass can be easily performed using
quadratic splines. This is obtained by fixing the combination (2M2

K −M2
π) at its physical value,

which at each pion mass defines areferencekaon mass,Mre f
K , given by

2[Mre f
K ]2−M2

π = 2[Mphys
K ]2− [Mphys

π ]2 (2.3)

with Mphys
π = 135.0 MeV andMphys

K = 494.4 MeV.
The results forf Kπ

T (0) and the slopesKπ
T , interpolated at the reference kaon massMK = Mre f

K ,
are shown in Figs. 3 and 4, respectively, for the three lattice spacings of our simulations. It can
clearly be seen that discretization effects are sub-dominant and therefore, in what follows, we

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
2
9
7

Electromagnetic operator between kaon and pion states I. Baum

0.2

0.3

0.4

0.5

0.6

-0.8 -0.6 -0.4 -0.2 0.0

M
π

 L ~ 3.3

M
π

 L ~ 4.3

pole fit

quadratic fit

f T

K
π

(q
2
)

q
2
   (GeV

2
)

M
π

 ~ 300 MeV

M
K
 ~ 530 MeV

Figure 1: The tensor form factorf Kπ
T (q2) obtained atMπ ≃ 300 MeV andMK ≃ 530 MeV versusq2 in

physical units. The dots and the squares (shifted for betterclarity) correspond to the gauge ensemblesB1

andB7, respectively, which differs only for the lattice size. Thesolid and dashed lines are the results of the
fits based on Eqs. (2.1) and (2.2), respectively.

0.50

0.55

0.60

0.65

0.70

0.75

0.15 0.20 0.25 0.30 0.35 0.40

f T

K
π

(0
)

M
K

2
   (GeV

2
)

M
π

 ~ 435 MeV

Figure 2: Results forf Kπ
T (0) versusM2

K atMπ ≃ 435 MeV. The square corresponds to the value off Kπ
T (0)

obtained by local interpolation via quadratic splines (dotted line) at the reference kaon massMre f
K ≃ 575

MeV from Eq. (2.3).

concentrate on the chiral extrapolation of our lattice data, which in the case off Kπ
T (0) is a much

more delicate point.

In Ref. [1] the first lattice calculation of the EM operator matrix element between kaon and
pion states was carried out in the quenched approximation and for pion masses above∼ 500 MeV.
There the chiral extrapolation was performed assuming thatf Kπ

T (0) reaches a non-vanishing value
in the SU(3) chiral limit(MK , Mπ) → 0. A simple linear fit in the squared kaon and pion masses
was attempted obtaining at the physical point the resultf Kπ

T (0) = 0.78(6).

In the degenerate caseMK = Mπ the chiral expansion of the tensor current has been studied in
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Figure 3: Results forf Kπ
T (0) versusM2

π at MK = Mre f
K in physical units. The dots, squares and triangles

are our results for the three lattice spacings of the ETMC simulations, specified in the inset. The solid and
dashed lines correspond to the fit given by Eq. (2.4) withB= 0 andD = 0, respectively.
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Figure 4: The same as in Fig. 3, but for the slopesKπ
T of the tensor form factor atq2 = 0.

Ref. [3]. The main finding is that the form factorf ππ
T (0) vanishes likeMπ for Mπ → 0, so that the

ratio f ππ
T (0)/Mπ tends to a non-vanishing value in the chiral limit. The same argument is expected

to hold as well in the case of theK → π transition: the form factorf Kπ
T (0) must vanish in the SU(3)

chiral limit in such a way that the ratiof Kπ
T (0)/(MK +Mπ) does not vanish in limitMK = Mπ = 0.

Therefore we perform the chiral extrapolation of our lattice data using the ansatz

f Kπ
T (0) = (Mre f

K +Mπ) A
[

1+BM2
π log(M2

π)+CM2
π +DM4

π
]

, (2.4)

whereA, B, C andD are unknown low-energy constants (LECs). The results of thefit (2.4) as-
suming eitherB = 0 (no chiral logs) orD = 0 are shown in Fig. 3 by the solid and dashed lines,
respectively. It can be seen that the effects of the chiral logs are not visible in our data. At the
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physical point we get

f Kπ
T (0) = 0.42(2stat) (ETMC) , (2.5)

where the error is statistical only. Had we neglected the mass factor (Mre f
K +Mπ) in Eq. (2.4) the

result at the physical point would change only marginally:f Kπ
T (0) = 0.46(2stat).

On the contrary, in the case of the quenched data of Ref. [1], which were determined at pion
masses above∼ 500 MeV, the inclusion of the mass factor (MK +Mπ) in the chiral extrapolation
changes significantly the result at the physical point by many standard deviations, namely from
f Kπ
T (0) = 0.78(6) to

f Kπ
T (0) = 0.49(4) (SPQcdR). (2.6)

These findings indicate that the real effect of the quenched approximation does not exceed 15%,
provided the correct mass factor is included in the chiral extrapolation.

In the case of the slopesKπ
T no mass factor should be considered and the chiral extrapolation of

the lattice data shown in Fig. 4 provides at the physical point the valuesKπ
T = 1.29(18stat) GeV−2,

which is consistent within the errors with the quenched result of Ref. [1] sKπ
T = 1.11(5) GeV−2.

3. Pion tensor charge

Following Ref. [3] the chiral expansion of the pion tensor charge f ππ
T (0) has the form

f ππ
T (0) = Mπ A′

[

1+
M2

π
(4π fπ)2 log(M2

π)+C′M2
π +D′M4

π

]

, (3.1)

where fπ ∼ 130 MeV and the presence of the mass factorMπ is expected to have an important,
bending effect on the value extrapolated at the physical point.

Our results forf ππ
T (0), obtained atβ = 3.9 for 260 MeV. Mπ . 575 MeV, are shown in

Fig. 5 and compared with the ones from Ref. [2], havingMπ & 440 MeV, and with the quenched
calculations of Ref. [1], ranging fromMπ ∼ 530 MeV up toMπ ∼ 800 MeV. It can be seen that our
results have a better statistical precision and cover much lighter pion masses, where the bending
effect due to the overall mass factorMπ is clearly visible.

Using Eq. (3.1) with our lattice points, we get at the physical point

f ππ
T (0) = 0.200(14stat) (ETMC) , (3.2)

to be compared with the QCDSF result [2] atNf = 2

f ππ
T (0)| = 0.216(34) (QCDSF). (3.3)

Finally, we also apply a simple fit of the formf ππ
T (0) = Mπ A′ [1+C′M2

π
]

to the three quenched
data of Ref. [1], obtaining at the physical point the result

f ππ
T (0) = 0.221(21stat) (SPQcdR), (3.4)

which clearly shows that quenching effects are sub-dominant on the pion tensor charge.
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Figure 5: Results for the pion tensor chargef ππ
T (0) versusM2

π in physical units from our simulations at
β = 3.9 (dots) and from Refs. [1] (triangles) and [2] (squares). The solid line is the result of the fit (3.1)
applied to our lattice points, while the dotted line corresponds to the fit described in the text and applied to
the quenched data of Ref. [1].
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