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parts: First, the calculation of the matrix element between kaon states of the product of two

space-time integrated,∆S= 1, four-quark weak operators. Second an RI/MOM subtraction to

remove the short distance part of this matrix element in a fashion consistent with the calculation

of the physical short distance part. Third an application of the Lellouch-Luscher method, gener-

alized to second order in the weak interactions, to control finite volume errors. Such an approach

promises to permit accurate lattice calculation of theKL-KS mass difference and the long-distance

contributions toεK .
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1. Introduction

Lattice QCD has been very successful at computing the effects of the electroweak interactions
on the properties of the strongly interacting particles. For many processes the large mass of theW±

andZ bosons cause their interactions with the quarks and gluons of the hadrons to take place in a
very small space-time region. These short distance interactions can be evaluated using electroweak
and QCD perturbation theory and their low energy effects on hadrons described by effective four
quark operators. For example, this approach provides a good description of both first-order decays
and even some second order processes such as the CP violating effects inK0−K

0
andB0− B

0

mixing. However, for general second order processes, in which twoW± and/orZ bosons appear,
it is possible that while eachW± or Z exchange will appear to take place at a point, the points
locating these two exchanges may be separated by a much larger distance∼ 1/ΛQCD. Such long
distance effects are believed to contribute to the CP violation seen inK0−K0 mixing at the 5%
level [1] but on at least the 20% level [2] for the CP conservingKL −KS mass difference.1

Here we present a method to compute such long distance effects using lattice QCD, focused on
the case of theKL −KS mass difference. There are three complications which must be overcome.
First we need to devise an Euclidean space expectation value which can be evaluated in lattice QCD
and which contains the second order energy shift of interest.

Second, such a lattice quantity will involve a product of two, first-order weak Hamiltonian
densities,H W(xi)i=1,2, each corresponding to one of theW± or Z exchanges. The short distance
behavior of this product as|x1− x2| → 0 will not describe the actual behavior of the exchange of
twoW± or Z bosons at nearby space-time points. Thus, this incorrect short distance behavior must
be removed and replaced by the known, physical, short distance behavior described above.

Third, the effects of finite volume, necessary in a lattice calculation, must be removed. These
appear especially significant since the infinite volume expression contains continuous integrals,
often with vanishing energy denominators evaluated as principal parts, while the finite volume
quantity is a simple sum of discrete finite volume states. Here a generalization of the method of
Lellouch and Luscher [4] can be used. We will now discuss how each of these obstacles may be
overcome in a calculation of theKL −KS mass difference,∆mK .

2. Second order lattice amplitude

The standard description ofK0 −K0 mixing provides an expression for theKL − KS mass
difference which we will write as

∆mK = 2P ∑
α

〈K0|HW|α 〉〈α |HW|K0〉
mK −Eα

. (2.1)

Here CP violating effects, at the 0.1% level, have been neglected, we are summing over inter-
mediate states|α 〉 with energyEα and normalization factors associated with the conserved total
momentum are suppressed. This generalized sum includes an integral over intermediate state ener-
gies and theP indicates the principal part of the integral over theEα = mK singularity.

1For a discussion of the lattice QCD calculation of long distance effects in different decay processes see Ref. [3].
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One possible way to capture a similar expression in a Euclidean space lattice calculation is
to evaluate the time-integrated second-order product that if evaluated in Minkowski space would
yield the∆mK contribution to the time evolution over a time interval[ta, tb]:

A =
1
2
〈K0(t f )

∫ tb

ta
dt2

∫ tb

ta
dt1HW(t2)HW(t1)K0(ti)〉. (2.2)

Here the initialK0 is created by a sourceK0(ti) at the timeti and the finalK0 state destroyed by
the sinkK0(t f ) at timet f . This amplitude is represented schematically in Fig. 1. Equation 2.2 can
be evaluated as a standard Euclidean space path integral witht f � tb � ta � t f . If the time extent
of this Euclidean path integral is sufficiently large, then when converted to an operator expression,
Eq. 2.2 becomes the vacuum expectation value of the time-ordered product of Heisenberg opera-
tors. Assuming thatt f − tb and ta− ti are sufficiently large to project onto theK

0
andK0 states,

substituting a sum over energy eigenstates|n〉, and integrating overt2 andt1 one obtains:

A = − ∑
n6=n0

〈K0|HW|n〉〈n|HW|K0〉
mK −En

{
tb− ta−

e−(En−mK)(tb−ta)−1
mK −En

}
e−(t f −ti)mK

−1
2
(tb− ta)2〈K0|HW|n0〉〈n0|HW|K0〉e−(t f −ti)mK . (2.3)

Anticipating a result from Sec. 4, we have assumed that a single two-pion intermediate state|n0〉 is
degenerate with the kaon and treated that state separately in the time integrations.

Figure 1: One type of diagram contributing toA of Eq. 2.2. Heret2 andt1 are integrated over the interval
[ta, tb], represented by the shaded region between the two vertical lines. In addition to this connected quark
flow there will also be disconnected diagrams in which no quark lines connectHW(t2) andHW(t1).

The coefficient of the(tb− ta) term in Eq. 2.3 is then a finite volume approximation to∆mK:

∆mFV
K = 2 ∑

n6=n0

〈K0|HW|n〉〈n|HW|K0〉
mK −En

. (2.4)

The other terms in Eq. 2.3 fall into four categories: i) The term independent oftb− ta within the
large curly brackets. This constant must be distinguished from the desired term proportional to
tb− ta. ii) Exponentially decreasing terms coming from states|n〉with En > mK. These should be
negligible if tb− ta is sufficiently large. iii) Exponentially increasing terms coming from states|n〉
with En < mK . These will be the dominant contributions and must be accurately determined and
removed as discussed in the paragraph below2. iv) The final term proportional to(tb− ta)2 arises
because our choice of volume makes oneπ−π state,|n0〉, degenerate with the kaon.

2The author thanks Guido Martinelli and Stephen Sharpe for pointing out this behavior which had been overlooked
when this talk was presented.
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The exponentially growing terms pose a significant challenge. Fortunately, we have some free-
dom to reduce their number and complexity. The two leading terms corresponding to the vacuum
and single pion states can be computed separately and subtracted. Two pion states lying belowmK

can be eliminated using the same techniques that have been developed to evade the Maiani-Testa
theorem and force the lowest energyπ−π state to be the on-shellK → ππdecay product. Either
choosing the kaon to have a non-zero laboratory momentum of 753 MeV or introducing G-parity
boundary conditions to force non-zero pion momentum can eliminate allπ−π states with energy
belowmK, at least for those lattice volumes that will be accessible within the next few years.

3. Short distance correction

The product of operators appearing in Eq. 2.2 accurately describes the second order weak ef-
fects when the corresponding Hamiltonian densitiesH (xi)i=1,2 are evaluated at space-time points
separated by a few lattice unitsa: |x2−x1| � a. However, as|x2−x1| → 0 the behavior is unphys-
ical, being dominated by lattice artifacts rather than revealing the short distance structure ofW±

andZ exchange. Fortunately, non-perturbative Rome-Southampton methods can be applied here
to accurately remove this incorrect behavior and replace it with the correct short distance behavior,
that portion of the process that has been traditionally computed using lattice methods.

This can be done by identifying the short distance part of the amplitude by evaluating the
four-quark, off-shell Green’s function

Γαβγδ(pi) = 〈d̃α (p4)s̃β(p3)
∫

d4x1d4x2H W(x2)H W(x1)s̃γ(p2)d̃δ(p1)〉. (3.1)

Here the quark fields are Fourier transformed and the gauge is fixed. A class of connected contri-
butions to this Green’s function is shown in Fig. 2. A standard application of Weinberg’s theorem
demonstrates that if the external momentapi obey a condition such aspi · pj = µ2(1−4δi j ), then
for µ2 � Λ2

QCD all of the internal momenta contributing toΓ(pi) will have the scaleµ , up to terms
of orderΛ2

QCD/µ2.

Figure 2: Diagram representing a class of connected contributions to the off-shell, four-quark Green’s
function defined in Eq. 3.1. In a non-perturbative evaluation of the Green’s functionΓ(pi), graphs of this
sort including all possible gluon exchanges would be included.

At low energies this high momentum part of the integrated productH W(x2)H W(x1) can be
represented as a linear combination of four-quark operators{Os}1≤s≤S. These operators are typi-
cally normalized by imposing conditions on off-shell Green’s functions similar to that in Eq. 3.1 in
which the product ofH W operators is replaced byOs and the same kinematic point evaluated. The
result is an alternative expression for the short distance part of the amplitudeA :

ASD = 〈K0(t f )
∫ tb

ta
dx0

∫
d3x

S

∑
s=1

clat
s (µ2)Os(~x,x0)K0(ti)〉. (3.2)
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The functionsclat
s (µ2) are Wilson coefficients for the lattice-regularized operator product expanded

in operators normalized using the regularization invariant (RI) Rome-Southampton scheme.

Thus, we can replace the incorrect short distance part of our lattice operator product by the
correct continuum contribution by adding to the integrated operator product in Eq. 2.2 the operator:

∫ tb

ta
dx0

∫
d3x

S

∑
s=1

{
ccont

s (µ2)−clat
s (µ2)

}
Os(~x,x0). (3.3)

Here the{ccont
s }1≤s≤S are the usual continuum Wilson coefficients that are computed from elec-

troweak and QCD perturbation theory to represent the correct short distance part of the physical
second order weak process while the lattice coefficientsclat

s can be computed from the somewhat
elaborate but well defined lattice RI/MOM calculation of the Green’s functions in Eq. 3.1.

An important issue on which the above argument depends is the degree to which the dimension-
6, four-quark operators introduced above capture the entire short distance part of the lattice ampli-
tude. Since the degree of divergence of the diagram shown in Fig. 2 is +2, the integration that
remains after the “subtraction” of the operator in Eq. 3.3 will still receiveO(1)contributions from
the lattice scale. This difficulty can be avoided by including dimension eight terms in the Wilson
expansion employed in Eq. 3.3. A more physical and more practical approach includes the charm
quark in the lattice calculation so that GIM suppression makes the integration more convergent.

4. Controlling finite volume errors

We now turn to the heart of this proposal: a demonstration that the potentially large volume
dependence coming from those energy denominators in Eq. 2.3 withEn ∼ mK can be removed,
leavingO(1/L4) finite-volume errors. This important conclusion is a consequence of a generaliza-
tion of the original method of Lellouch and Luscher. The starting point is Luscher’s relation [5]
between an allowed, finite-volume, two-particle energy,E = 2

√
k2 +m2

π and the two-particle scat-
tering phase shiftδ(E):

φ(kL/2π)+δ(E) = nπ (4.1)

wheren is an integer and the known functionφ(q) is defined in Ref. [5].

Following Lellouch and Luscher we consider thes-wave,π−π scattering phase shift as mod-
ified by the weak interactions and use Eq. 4.1 to connect this to the finite volume energies, deter-
mined using degenerate perturbation theory for theKS↔π−π finite volume system. For simplicity
we will limit our discussion to the larger∆I = 1/2 part ofHW and theI = 0 π−π state.3 The rela-
tion between the finite and infinite volume second order mass shift is obtained by imposing Eq. 4.1,
accurate through second order inHW.

We begin by examining the energies, accurate through second order in the strangeness chang-
ing, ∆I = 1/2 weak Hamiltonian,HW, of the finite volume system made up of aKS meson, anI = 0
two-pion state|n0〉 with energyEn0 nearly degenerate withmK and other single and multi-particle
states coupled toKS and|n0〉 by HW. Following second order degenerate perturbation theory, we

3Treating the general case is not difficult:H∆I=3/2
W ·H∆I=3/2

W andH∆I=1/2
W ·H∆I=1/2

W can be analyzed in the same

way while the combinationH∆I=1/2
W ·H∆I=3/2

W contains no two-pion intermediate states.
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can obtain the energies of theKS and two-pion state|n0〉 as the eigenvalues of the 2×2 matrix:

 mK +∑n6=n0

|〈n|HW|KS〉|2
mK−En

〈KS|HW|n0〉
〈n0|HW|KS〉 En0 +∑n6=KS

|〈n|HW|n0〉|2
En0−En


 . (4.2)

Finite and infinite volume quantities can then be related by requiring that the eigenvalues of
the 2× 2 matrix in Eq. 4.2 solve Eq. 4.1 where the phase shiftδ(E) is the sum of that arising
from the strong interactions,δ0(E), a resonant contribution from theKS pole and more familiar
second-order Born terms:

δ(E) = δ0(E)+arctan(
Γ(E)/2

mK +∆mKS−E
)−π ∑

β 6=KS

|〈β |HW|n0〉|2

E−Eβ
. (4.3)

HereΓ(E) is proportional to the square of theKS - two pion vertex which becomes theKS width
when evaluated atE = mK :

Γ(E) = 2π|〈ππ(E)|HW|KS〉|2, (4.4)

where for the infinite volume,I = 0, s-wave, 2-pion state we choose the convenient normalization
〈ππ(E)|ππ(E′)〉 = δ(E−E′). The three terms in Eq. 4.3 are shown in Fig. 3.

Figure 3: Diagrams showing the three contributions to theπ−π phase shift when both strong and second
order weak effects are included. The statesβ are multi-particle states withS= ±1.

The easiest case to examine is that in which the volume is chosen to makeEn0−mK very small
on the scale ofΛQCD but large compared toΓ or ∆mK , so thatmK andEn0 are not “degenerate”.
Expanding Eq. 4.1 and theπ−π energy eigenvalue from Eq. 4.2 inHW and collecting all terms of
second order inHW we find:

∂
(

φ+δ0

)

∂E

∣∣∣∣∣∣
E=En0

{
|〈KS|HW|n0〉|2

En0 −mK
+ ∑

n6=KS

|〈n|HW|n0〉|2

En0 −En

}
=

Γ(En0)/2
En0 −mK

+∑
β 6=KS

π|〈β |HW|ππ〉|2

En0 −Eβ
. (4.5)

This relation has two useful consequences. First we can equate the residues of the kaon poles,
En0 = mK on the left- and right-hand sides. This gives us the original Lellouch-Luscher relation.
Second we can subtract the pole terms and equate the remaining parts of Eq. 4.5 evaluated at
En0 = mK . This second result will be used below to remove the second-order Born terms.

Finally, closer to the original spirit of Lellouch and Luscher, we substitute the phase shiftδ(E)
from Eq. 4.3 into Eq. 4.1 and require that the resulting equation be valid at the energy eigenvalues
E± of the 2× 2 matrix in Eq. 4.2 for a box chosen to makeEn0 = mK. To zeroth order inHW,
this relation is the usual Luscher relation betweenδ0(E) and the allowed, finite volume,π−π
energy. When Eq. 4.1 is expanded to first order, we reproduce the standard derivation of Lellouch
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and Luscher’s relation. Expanding to second order inHW yields the desired relation between the
finite and infinite volume expressions for the second order weak contribution to theKS difference:

∆mKS = ∑
n6=n0

|〈n|HW|KS〉|2

mK −En
+

1
∂(φ+δ0)

∂E

[
1
2

∂ 2(φ+δ0)
∂E2

|〈n0|HW|KS〉|2

− ∂
∂En0

{
∂ (φ+δ0)

∂E

∣∣∣∣
E=En0

|〈n|HW|KS〉|2
}]

(4.6)

where Eq. 4.5, evaluated atEn0 = mK with the pole terms subtracted has been used to eliminate the
second-order Born terms. Note the∂/∂En0 appearing in the final term in Eq. 4.6 must be evaluated
by varying the spatial volume which determinesEn0.

4

To obtain theKL −KS mass difference we first observe that theKL second order mass shift is
given by a formula similar to Eq. 4.6 in whichKL replacesKS and all but the first term on the right-
hand side is omitted sinceKL does not couple to two pions, assuming CP conservation. Second if
this new equation is subtracted from Eq. 4.6 the result is similar to Eq. 4.6 with∆m= ∆mKS−∆mKL

on the left-hand side, the first term on the right-hand side is simply∆mFV
K of Eq. 2.4 and the

remaining twoO(1/L3) correction terms on the right hand side of Eq. 4.6 are unchanged.

5. Conclusion

We have proposed a lattice method to compute theKL−KS mass difference in which all errors
can be controlled at the percent level. Both short and long distance effects are represented, includ-
ing a possibly∆I = 1/2-enhanced contribution fromI = 0 two pion states. Given the complexity
of the analysis, the importance of using physical kinematics and the difficulty of the disconnected
diagrams this calculation is not practical today but may be possible in the next few years.

The author thanks his RBC/UKQCDcollaborators for important contributions to this work and
Laurent Lellouch, Guido Martinelli and Stephen Sharpe for very helpful discussions. This work
was supported in part by U.S. DOE grant DE-FG02-92ER40699.
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