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We present preliminary results on the of neutral kaon oscillations in extensions of the Standard

Model. UsingNf = 2 maximally twisted sea quarks and Osterwalder-Seiler valence quarks, we

achieve both O(a)-improvement and continuum-like renormalization pattern for the relevant four-

fermion operators. We perform simulations at three values of the lattice spacing and extrapo-

late/interpolate our results to the continuum limit and physical light/strange quark mass. The

calculation of the renormalization constants of the complete operator basis is performed non-

perturbatively in the RI-MOM scheme.
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1. Introductory Remarks and Calculation Setup

Flavour Changing Neutral Currents (FCNC) and CP violation may furnish useful informa-
tion on the impact of models defined beyond the standard model(BSM). In various BSM models
(like for example the supersymmetric ones) there appears the possibility for∆S= 2 processes at
one loop, even mediated by the strong interactions. These effects are thus potentially large. The
computation of the relevant matrix elements of the effective Hamiltonian in combination with the
experimental value ofεK offers the chance to constrain the values of the model parameters (like
for instance the off-diagonal terms of the squark mass matrix in supersymmetric models [1]) which
enter explicitly in the Wilson coefficients.

In all the BSM models the effective Hamiltonian relevant forthe ∆S= 2 processes takes the
general form

H
∆S=2

eff =
5

∑
i=1

Ci(µ)Oi +
3

∑
i=1

C̃i(µ)Õi (1.1)

where the operatorsOi are defined by

O1 = [s̄aγµ(1− γ5)d
a][s̄bγµ(1− γ5)d

b],

O2 = [s̄a(1− γ5)d
a][s̄b(1− γ5)d

b], O3 = [s̄a(1− γ5)d
b][s̄b(1− γ5)d

a],

O4 = [s̄a(1− γ5)d
a][s̄b(1+ γ5)d

b], O5 = [s̄a(1− γ5)d
b][s̄b(1+ γ5)d

a] (1.2)

We note that in the SM case only the operatorO1 contributes. The parity-even parts of the operators

Õ1 = [s̄aγµ(1+ γ5)d
a][s̄bγµ(1+ γ5)d

b],

Õ2 = [s̄a(1+ γ5)d
a][s̄b(1+ γ5)d

b], Õ3 = [s̄a(1+ γ5)d
b][s̄b(1+ γ5)d

a] (1.3)

coincide with those of the operatorsOi . Therefore, due the parity conservation of the strong in-
teractions only the parity-even contributions of the operatorsOi need to be calculated. Defining a
basis of the parity even operators as follows

OVV = (s̄γµd)(s̄γµd), OAA = (s̄γµγ5d)(s̄γµγ5d),

OPP = (s̄γ5d)(s̄γ5d), OSS= (s̄d)(s̄d),

OTT = (s̄σµνd)(s̄σµνd) (1.4)

through a Fierz transformation we obtain

O1 = (OVV +OAA), O2 = (OSS+OPP), O3 = −
1
2
(OSS+OPP−OTT),

O4 = (OSS−OPP), O5 = −
1
2
(OVV −OAA) (1.5)

Up to now, lattice calculations have been presented in the quenched approximation ([2], [3],
[4]) with the exception of a preliminary study of the bare matrix elements using unquenched sim-
ulations with 2+1 dynamical quarks [5].

Our lattice computations have been performed at three values of the lattice spacing using the
Nf = 2 dynamical quark configurations produced by the ETM collaboration [6]. ETMC dynamical
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configurations have been produced with the tree-level Symmanzik improved action in the gauge
sector while the dynamical quarks have been regularized by employing the twisted mass (tm) for-
malism [7]. It has been demonstrated that with the conditionat maximal twistthis formalism
provides automaticO(a)-improved physical quantities [8].

In the so calledphysicalbasis the fermion lattice action concerning the sea sector is written

SMtm
sea = a4∑

x
ψ̄(x)

{1
2 ∑

µ
γµ(∇µ + ∇∗

µ)− iγ5τ3[Mcr−
a
2∑

µ
∇∗

µ∇µ
]

+ µsea

}

ψ(x) (1.6)

where the Wilson’sr parameter has been set to unity,ψ(x) is the quark flavour doublet,∇µ and∇∗
µ

are nearest-neighbour forward and backward lattice covariant derivatives,µsea is the (twisted) sea
quark mass andMcr the critical mass. It has been shown that the use of the tm regularization can
simplify the renormalization pattern properties of the four-fermion operators (e.g.BK) [7, 9, 10].
Moreover, bothO(a) improvement and continuum-like operator renormalizationpattern can be
achieved introducing a valence quark action of the Osterwalder-Seiler type [11] by allowing for a
replica of the down (d, d′) and strange (s, s′) flavours [12]. The valence quark action assumes the
form

Sval = a4∑
x

∑
f=d,d′,s,s′

q̄f (x)
{1

2∑
µ

γµ(∇µ + ∇∗
µ)− iγ5r f

[

Mcr−
a
2 ∑

µ
∇∗

µ∇µ
]

+ µ f

}

qf (x) (1.7)

with −rs = rd = rd′ = rs′ = 1. Note that the fieldqf represents just one individual flavour. The four
fermion operators of Eq. (1.4) can be written in general formasOΓΓ̃ = 2{[q̄1Γq2][q̄3Γ̃q4]+ (q2 ↔

q4)} with q1 andq3 identified with the strange quark (by settingµs = µs′ = µstrange) andq2 andq4

identified with the down quark (by settingµd = µd′ = µℓ); the interpolating fields for the external
(anti)Kaon states are made up of a tm-quark pair (d̄γ5s, with −rs = rd) and a OS-quark pair (̄d′γ5s′,
with rd′ = rs′). Thismixedaction setup with maximally twisted Wilson-like quarks hasbeen studied
in detail in Ref. [12] and it has been demonstrated that it allows for an easy matching of sea and
valence quark masses and leads to unitarity violations thatvanish asa2 as the continuum limit is
approached. Moreover in the present computation the quark mass matching is incomplete because
we are neglecting the sea strange quark (i.e. we work in a partially quenched set-up). A first test
that the proposed method leads toO(a) improved results was already performed in the calculation
of BK with fully quenched quarks [13]. In a recent publication [14] our collaboration, using the OS-
tm mixed action set-up, has presented anO(a)-improved computation ofBK with Nf = 2 dynamical
quarks. Using non-perturbative operator renormalisationand three values for the lattice spacing,
the RGI value ofBK in the continuum limit isBRGI

K = 0.729±0.030.
In Table 1 we give the simulation details and the values of thesea and the valence quark

masses at each value of the gauge coupling for the calculation presented in this work. The smallest
sea quark mass corresponds to a pion of about 280 MeV for the case ofβ = 3.90. Forβ = 4.05
the lightest pion weighs 300 MeV while forβ = 3.80 the lowest pion mass is around 400 MeV.
The largest sea quark mass for the three values of the latticespacing is about half the strange quark
mass. For the inversions in the valence sector we have made use of the stochastic method (one–end
trick of Ref. [15]) in order to increase the statistical information. Propagator sources have been
located at randomly chosen timeslices. For more details on the dynamical configurations and the
stochastic method application see Ref. [16].

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
3
0
2

K0− K̄0 Mixing Beyond the SM from Nf = 2 tmQCD P. Dimopoulos

β a−4(L3×T) aµℓ = aµsea aµ“s”

3.80 243×48 0.0080 0.0110 0.0165, 0.0200, 0.0250
(a∼ 0.1 fm)

3.90 243×48 0.0040, 0.0064 0.0150, 0.0220, 0.0270
0.0085, 0.0100

” 323×64 0.0030, 0.0040 0.0150, 0.0220, 0.0270
(a∼ 0.085 fm)

4.05 323×64 0.0030, 0.0060 0.0120, 0.0150, 0.0180
(a∼ 0.065 fm) 0.0080

Table 1: Simulation details

2. B-Parameters and Four-Fermion Matrix Elements

As it has been shown in [12], the discrete symmetries guarantee that in the OS-tm mixed
action set-up the renormalisation of the four-fermion operators is continuum-like in the sense that
the mixing between operators of different naive chirality is of orderO(a2) or higher. An equivalent
view of the same property can be offered by the fact that in the(unphysical) tm-basis the parity-
even part of each of the four fermion operators is mapped overits parity-odd counterpart. Then
due to the CPS symmetries the parity odd operators have the same block-diagonal renormalisation
matrix pattern both in the continuum and at finite value of thelattice spacing ([17], [18]).
The B-parameters for the operators (1.5) are defined as

〈K̄0|O1(µ)|K0〉 = B1(µ)
8
3

m2
K f 2

K ≡ BK(µ)
8
3

m2
K f 2

K

〈K̄0|Oi(µ)|K0〉 = CiBi(µ)[
m2

K fK
ms(µ)+md(µ)

]
2
,

whereCi = {−5/3,1/3,2,2/3}, i = 2, . . . ,5. The matrix element of the operatorO1 vanishes in
the chiral limit while the matrix element of the operatorsOi i = 2, . . . ,5 get a non-zero value in the
chiral limit. From the above equations it can be seen that thecalculation of theBi parameters for
i = 2, . . . ,5 involves the calculation of the quark mass at the same scaleµ . In order to avoid
any extra systematic uncertainties in the computation of the matrix elements due to the quark
mass evaluation, it has been proposed the calculation of appropriate ratios of the four-fermion
matrix elements ([2], [3]). Here, besides the calculation of the B parameters, we also consider the
following ratios

Ri =
( f 2

K

m2
K

)

exp
[
(mK

fK

)

−rs=rd

(mK

fK

)

rd′=rs′

〈

K̄0
∣

∣Oi(µ)
∣

∣K0
〉

〈

K̄0
∣

∣O1(µ)
∣

∣K0
〉 ] i = 2, . . . ,5 (2.1)

The computation of the renormalisation constants (RCs) relevant for both the four-fermion and
two-fermion operators1 has been performed in a non-perturbative way using the RI-MOM scheme
following the strategies detailed in Refs. [19] and [20]. InFig. 1 we show, forβ = 3.90, that all the

1In our OS-tm mixed action set-up we need to use the RCs for the scalar and the pseudoscalar density operators in
the calculation ofBi for i = 2, . . . ,5. ForB1, instead, (i.e.BK) the normalisation constants for the axial and the vector
current are needed.
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Figure 1: The off-diagonal off-block elements of the four-fermion RC-matrix operator,∆i j , (for β = 3.90)
which take values compatible with zero.

off-diagonal off-block elements of the four-fermion RC-matrix operator,∆i j , which are expected to
vanish with the tm-OS mixed action setup, take values compatible with zero. In Fig. 2 we show the
combined fits ofRi(µℓ,µs), i = 2, . . . ,5 with respect to the renormalised light quark mass,r0µR

ℓ , in
theMSscheme.

In Table 2 we present our preliminary results in the continuum limit and in theMSscheme for
the B-parameters and the ratios<Oi>

<O1>
, i = 2, . . . ,5 calculated at the physical point(µd,µs). The

ratios, <Oi>
<O1>

, i = 2, . . . ,5, have been calculated either directly (throughRi) or using theBi estimates
and the values of the u/d and strange quark mass [23]. The results are compatible within one or
two standard deviations. We have tried fit functions using either a second or first order polynomial
with respect to the light quark mass to which a term proportional toa2 has been added; we do not
notice a significant difference in the final continuum limit values. We should note that the use of a
fit function containing a NLO logarithmic term leads to rather similar results with those obtained
with a second order polynomial fit function.
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Figure 2: Combined fits ofRi(µℓ,µs), i = 2, . . . ,5 with respect to the renormalised light quark mass,r0µR
ℓ ,

in theMSscheme. The fit functions, shown here, are second order polynomial functions of the renormalised
light quark mass with the addition of a term proportional toa2.
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