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1. Introduction

Precise lattice calculations of K → ππ decays will provide quantitative insight into the origin
of the ∆I = 1/2 rule and direct CP violation in kaon decays. Previous calculations have relied
on the quenched approximation or have attempted to use chiral perturbation theory to extrapolate
from heavy quark masses down to physical masses, or both [1, 2, 3, 4, 5, 6, 7]. The calculation
presented here avoids both these sources of error by computing the K → ππ amplitude directly
using dynamical lattices with 2+1 flavours of domain wall fermions (DWF) at near physical pion
mass. We use RBC/UKQCD 323 × 64, Ls = 32 lattices which use the Dislocation Suppressing
Determinant Ratio (DSDR) plus Iwasaki gauge action with inverse lattice spacing a−1 ≈ 1.4 GeV
(β = 1.75) and domain wall height M5 = 1.8. We use ensembles generated with amsea

l = 0.001,
amsea

s = 0.045, corresponding to a unitary pion mass of mπ ≈ 180 MeV.

2. Four-Quark Operators and The Effective Hamiltonian

The weak interactions and the effects of heavier quarks can be included in the lattice QCD
simulation by evaluating matrix elements of an effective Hamiltonian [8, 9]. In particular the
conventions of [3] are used. We calculate matrix elements of four-quark operators between K and
ππ states. In this paper the amplitude A2 is calculated, which requires the evaluation of matrix
elements of three operators. These operators are classified by how they transform under SU(3)L ×
SU(3)R: Q(27,1), Q(8,8) and Q(8,8)mx. Progress in calculating A0 is described in [10].

3. Boundary Conditions

We wish to simulate the K → ππ decay at physical kinematics, which requires the final state
pions to have a non-zero momentum. This is achieved by imposing antiperiodic boundary condi-
tions on the quark fields in one or more spatial directions. The allowed momenta of the quark are
then given by pn = (π +2πn)/L, where L is the spatial extent of the lattice.

We relate the physical
〈
π+π0

∣∣Q∆I=3/2
∆Iz=1/2 |K

+〉 matrix element to the unphysical matrix element

〈π+π+|Q∆I=3/2
∆Iz=3/2 |K

+〉 using the Wigner-Eckart theorem. This simplifies the operators and allows
us to use periodic boundary conditions on the up- and strange-quarks while using antiperiodic
boundary conditions only on the down-quark, thus giving the two pions momentum while the kaon
remains at rest.

If antiperiodic boundary conditions are imposed on the d-quark in only the x direction with
periodic boundary conditions in the y and z directions then we can have a two-pion ground state
in which one pion has momentum px = π

L and the other pion has momentum px = −π
L . The

antiperiodic boundary conditions allow us to extract non-zero momentum pions without the need
to fit to an excited state, which would have been necessary had we imposed periodic boundary
conditions on all the quark fields. In principle we can impose antiperiodic boundary conditions on
the d-quark in one, two, or all three spatial directions corresponding to individual ground state pion
momenta of p = π/L,

√
2π/L and

√
3π/L respectively.

4. Details of the Calculation

The calculation was carried out on 62 configurations of dynamical 323 × 64 lattices using
DSDR+Iwasaki gauge action and domain wall fermions with Ls = 32, generated on BG/P machines
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at Argonne National Laboratory. Further details of the ensemble generation are given in [11]. The
inverse lattice spacing is a−1 = 1.365(22) GeV, the physical volume is (4.62 fm)3 and we set
the light and strange valence quark masses to aml = 0.0001 and ams = 0.049 respectively. This
corresponds to a pion mass of mπ = 141.9(2.3) MeV and a kaon mass of mK = 507.4(8.5) MeV.

We combined propagators with periodic and antiperodic boundary conditions in the time di-
rection in order to double the effective time extent of the lattice. The meson correlation functions
contained propagators which were computed with a source at t = 0 (corresponding to (P+A) bc)
and t = 64 (corresponding to (P-A) bc). We also generated strange-quark propagators with sources
at tK = 20, 24, 28, 32, 36, 40 and 44 in order to calculate K → ππ correlators with kaon sources at
these times, while the two-pion sources remained at either t = 0 or t = 64. Thus we could achieve
time separations between the kaon and two pions of 20, 24, 28 and 32 in two different ways which
doubled the statistics. These separations were chosen so that the signals from the kaon and two
pions did not decay to noise before reaching the four-quark operator Q.

For the kaon and pions with zero momentum we use propagators with Coulomb gauge-fixed
wall sources. For the two pions with non-zero momentum we use the same type of propagators for
the u quark but used propagators with antiperodic spatial boundary conditions for the d-quark with
Coulomb gauge-fixed momentum wall sources of the “cosine” type

sp, cos(x) = cos(pxx)cos(pyy)cos(pzz) . (4.1)

We use the same cosine source for each d-quark, which introduces a cross term that couples to
two-pion states with non-zero total momentum. For example, if we consider giving momentum in
only the x direction the product of the sources of the two d-quarks is

sp, cos(x1)sp, cos(x2) = cos
(π

L
x1

)
cos

(π
L

x2

)
=

1
4

(
ei π

L x1ei π
L x2 + ei π

L x1e−i π
L x2 + e−i π

L x1ei π
L x2 + e−i π

L x1e−i π
L x2

)
.

(4.2)

We require the two pions to have individual momentum p1 =
π
L x̂ and p2 =−π

L x̂, but the first and last
terms of equation (4.2) couple to two-pion states with total momentum 2 π

L and −2 π
L respectively.

We eliminate the unwanted terms in the two-pion correlator by using pure exponential momentum
sinks which constrain the final state to have zero total momentum. In the K → ππ correlator, the
zero momentum kaon has a similar effect on the cosine sources of the two-pions. Had we used the
more conventional momentum source

sp(x) = eip·x (4.3)

we would have needed to perform two separate d-quark inversions with momentum +p for one
and −p for the other. The cosine source eliminates one of these inversions. In practice we only
compute d-quark propagators with antiperiodic boundary conditions in 0 or 2 spatial directions,
corresponding to pions with ground state momenta p= 0 and p=

√
2π/L. This choice is motivated

by the expectation that for our choice of quark masses, p =
√

2π/L will correspond to on-shell
kinematics.

5. Analysis and Results

We extract the K → ππ matrix element M by fitting a constant to the left hand side of (5.1)
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Ci
Kππ(t)

CK(tK − t)Cππ(t)
=

Mi

ZKZππ
. (5.1)

Ci
Kππ is the K → ππ correlator with a kaon source at tK , i labels the four-quark operator Qi which

is inserted at time t, and ZK and Zππ are calculated from the kaon and two-pion correlators respec-
tively, whose sources are at t = 0. The left hand side of equation (5.1) is plotted in figure 1 for each
of the three operators. The figure demonstrates that sufficiently far from the kaon and two-pion
sources we are justified in fitting to a constant. The fit results for Mi/(ZKZππ) are indicated on the
plot.
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(a) (27,1) operator
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(b) (8,8) operator
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(c) (8,8)mx operator

Figure 1: K → ππ quotient plots for p =
√

2π/L. The two pion source is at t = 0 while the kaon source is
at t = 24. The dashed line shows the error on the fit

The finite volume matrix elements are related to the infinite volume amplitudes Ai using the
Lellouch-Lüscher factor [12, 13]. In particular we have

Ai =

[√
ν/4

πqπ

√
∂φ
∂qπ

+
∂δ
∂qπ

]
1√
ν
√

mKEππMi (5.2)

where the quantity in square brackets (denoted by LL in table 2) contains the effects of the Lellouch-
Lüscher factor beyond the free field normalization. Eππ is the energy of the two-pion state, δ is
the s-wave phase shift, ν is a factor counting the free-field degenerate states, qπ is a dimension-
less quantity related to the individual pion momentum kπ via qπ = kπL/2π and φ is a kinematic
function defined in [12]. Once qπ is known, δ can be calculated using the Lüscher quantisation
condition [14].

nπ = δ (kπ)+φ(qπ). (5.3)

Eππ is found by fitting the quotient of correlators Cππ/(Cπ)
2 ∼ Ae−∆E t to extract ∆E = Eππ −

2Eπ . We then get the two-pion energy by calculating ∆E + 2Eπ , where in the case of p = 0,
Eπ = mπ while for p =

√
2π/L, Eπ is found from a 2 parameter fit to the pion correlation function

which also has p =
√

2π/L. This method is preferred to directly extracting Eππ from the two-pion
correlator because the quotient Cππ/(Cπ)

2 cancels some common fluctuations in the numerator and
denominator and reduces the error.

The pion momentum kπ in the two-pion state is determined from the two-pion energy using the
dispersion relation Eππ = 2

√
m2

π + k2
π . It differs from p = 0,

√
2π/L due to interactions between

the two pions. Results for Eππ , kπ , qπ and δ are presented in table 1. ∂φ/∂q can be calculated
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analytically so the only unknown in equation (5.2) is ∂δ/∂q. The results for the phase shift can be
plotted against kπ and compared with experiment [15, 16]. This is done in figure 2(a) and we see
good agreement with experiment. For p = 0 we make the approximation that δ is linear with kπ in
order to calculate ∂δ/∂qπ (see figure 2(b)). For p =

√
2π/L we use the phenomenological curve

[17] shown in figure 2(a) to calculate the derivative of the phase shift at the corresponding value
of qπ . The derivative of the phase shift is found to be a small factor in comparison with ∂φ/∂qπ .
Results for ∂φ/∂qπ and ∂δ/∂qπ are shown in table 2.

Table 1: Two pion energy and s-wave phase shift
p Eππ (MeV) kπ (MeV) qπ δ (degrees)
0 285.9(4.6) 17.55(61) 0.0655(21) -0.306(29)√

2π/L 489.2(8.1) 199.2(3.8) 0.743(11) -10.4(3.3)

Table 2: Contributions to Lellouch-Lüscher factor
p ∂φ/∂qπ ∂δ/∂qπ LL
0 0.239(14) -0.0815(50) 0.9636(22)√

2π/L 5.039(35) -0.2927(52) 0.933(11)
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calculated using chiral perturbation theory [18].

Figure 2: Plot of I = 2 two-pion s-wave phase shift against momentum kπ . The results from p = 0 and
p =

√
2π/L are shown in red.

The amplitudes Ai are related to the physical decay amplitude A2 via

A2 = a−3

√
3
2

GFVudV ∗
us ∑

i, j
Ci(µ)Zi j(µ)A j, (5.4)

where Ci are the Wilson Coefficients and Zi j are the renormalization constants, calculated using
non-perturbative renormalization (NPR). The factor

√
3/2 is needed to convert from the unphysical

K+ → π+π+ amplitudes back to the physical K+ → π+π0 amplitudes. At present only Z(27,1) has
been calculated; for the (8,8) and (8,8)mx operators (which mix under renormalization) we make
the approximation Zi j = 0.9Z2

qδi j. A full calculation of Zi j for the (8,8) and (8,8)mx operators

5
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on the lattice is currently under way [19]. Comparing Eππ for p =
√

2π/L with the kaon mass
mK = 507.4(8.5) MeV we see that the decay is nearly energy conserving, so we use the results
from p =

√
2π/L to compute A2. Results for Re(A2) and Im(A2) for the four different kaon source

times are shown in table 3. Our final result for Re(A2) and Im(A2) is an error weighted average
(EWA) over the four kaon source times.

Table 3: Final results for A2. The errors quoted are statistical errors only.
tK Re(A2)(units of 10−8 GeV) Im(A2)(units of 10−13 GeV)
20 1.33(11) -8.11(52)
24 1.44(11) -8.77(60)
28 1.53(13) -8.58(58)
32 1.20(16) -9.01(75)

EWA 1.396(81) -8.46(45)

6. Systematic Error

The major sources of systematic error in the determination of A2 are scaling violations, finite
volume effects, partial quenching, uncertainty in ∂δ/∂q, and the fact that the masses and momen-
tum are slightly different from their physical values. Furthermore, the approximation made for the
renormalization constants for the (8,8) operators introduces a large systematic error into Im(A2)

which we will estimate as 20%. A2 is very sensitive to scaling violations because it is proportional
to a−3. We estimate this systematic by calculating Re(A2) with a lattice spacing determined from
fK , mΩ, and r0 respectively, and find a fluctuation of 8.5% among the three values. For finite vol-
ume effects we estimate 7% for the systematic error using finite volume chiral perturbation theory
for the K → ππ matrix elements [20, 21]. One expects that for ∆I = 3/2 decays partial quench-
ing will introduce small errors and in [22] the use of partial quenching has been shown to affect
Re(A2) by about 2%. A value of ∂δ/∂q that is rather larger in magnitude is obtained just by putting
a straight line through the two-pion phase shift data points from this calculation in figure 2(a); this
value yields a result for Re(A2) that differs by 2% which we use as our conservative estimate of
this systematic. Finally, a K → ππ calculation on 243 quenched lattices was done for a variety
of meson masses and two-pion energies [23], and shows that the deviations of these parameters
from their physical values in the present calculation causes an 8% difference in Re(A2). Adding all
errors in quadrature results in a preliminary estimate of 14% for the systematic error in Re(A2) and
24% for the systematic error in Im(A2).

7. Conclusions

We have presented preliminary results for the ∆I = 3/2 K → ππ decay amplitude on 323 lat-
tices with 2+1 flavours of DWF and the Iwasaki-DSDR gauge action. We find mπ = 141.9(2.3) MeV,
mK = 507.4(8.5) MeV and Eππ = 489.2(8.1) MeV. The main contribution to Re(A2) is expected to
be from the (27,1) operator, and our result 1.396(081)stat(194)sys ×10−8 GeV can be compared to
the experimental result of 1.5×10−8 GeV and is found to agree within error. This is the first time a
calculation of this type has been achieved. Im(A2) is dominated by the operators in the (8,8) rep-
resentation, so we expect there to be a large systematic error on Im(A2) due to the approximation
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made for Zi j. This is reflected in our final answer Im(A2) = −8.46(45)stat(2.06)sys × 10−13 GeV.
This source of systematic error will be eliminated once the NPR calculation has been completed.
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