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1. Introduction

The observation of the ∆I = 1/2 rule and direct CP violation in kaon decays has attracted
extensive theoretical study but both still lack a quantitative explanation. The running of the Wilson
coefficients down to∼ 2 GeV which represents short distance physics can only explain a factor of 2,
far less than the experimental factor of 25 ∆I = 1/2 rule enhancement. The remaining enhancement
comes from hadronic matrix elements which requires non-perturbative treatment. On the other
hand, direct CP violation in kaon decays serves a very important check of the standard model’s
CKM mechanism of CP violation. While experimentalists have measured Re(ε ′/ε) = 1.65(26)×
10−3, with only 16% error, there is no reliable theoretical calculation based on the Standard Model.
Previous chiral perturbation theory based lattice QCD calculation using 2+1 dynamical domain
wall fermion fails to give a conclusive result because of large systematic error [1]. Therefore, a
direct lattice calculation of K→ ππ decay is extremely important to provide an explanation of the
nature of ∆I = 1/2 rule and direct CP violation. This is a notoriously difficult calculation, but with
the increasing advance of computing power, we want to show that it is now accessible.

In this paper, we try to do a direct, brute force calculation of the needed weak matrix elements.
The isospin 0 π−π final state involves disconnected graphs that make the calculation very difficult.
For these graphs, the noise does not decrease with the increasing time separation of the source and
sink, while the signal does. Therefore, huge statistics is needed to get a clear signal. As a trial
calculation, we do this on a relatively small lattice , so it is easier to collect large statistics. We
concentrate on the study of the statistical uncertainty since it is the major difficulty of the problem.
We will mainly report our results for the ∆I = 1/2 calculation in this paper. The inclusion of the
∆I = 3/2 part is for completeness; a much better calculation of the ∆I = 3/2 amplitude alone on
a large lattice can be found in [2]. In Section 2, we summarize our setup of the calculation. Then
our π − π scattering results are given in Section 3. Section 4 shows the details of the K0 to ππ

contractions, and the calculated results and conclusion are shown in Section 5.

2. Computational Details

Our calculation uses the Iwasaki gauge action(β = 2.13) and a 2+1 flavor(ml = 0.01, ms =

0.032) domain wall fermion action, with space time volume 163× 32, and Ls = 16. The inverse
lattice spacing for these lattices is determined to be 1.73(3)GeV, and the residual mass is mres =

0.00308(4). The propagators are calculated on each of the 32 time slices using a Coulomb gauge
fixed wall source (used for mesons), and a random wall source (used to calculate loops in type3
and type4 graphs in Fig. 2). One propagator needs 12 (3 colors and 4 spins) Dirac operator
inversions, so all together we carry out a few sets of 384 inversions for different sources and quark
masses on a given configuration. This calculation is accelerated by a factor of 2-3 for ml = 0.01
by computing the Dirac eigenvectors with the smallest 35 eigenvalues and limiting the conjugate
gradient inversion to the remaining orthogonal subspace. In order to obtain an on shell K0→ ππ

decay amplitude, the valence strange quark is partially quenched and its mass is chosen to be
ms = 0.066,0.099,0.165, with the corresponding kaon mass shown in Tab. 1. In the following
section, we will see that we can interpolate to on shell decay kinematics for both the I = 2 and
I = 0 channels. This calculation is done on 400 configurations separated by 10 trajectories each.
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Table 1: Masses of pion and kaons and energies of the two-pion states. Here E ′I0 represents the isospin 0,
two-pion energy when the disconnected graph V is ignored.

mπ EI0 E ′I0 EI2 mk(0) mk(1) mk(2)
0.24267(68) 0.450(17) 0.4392(59) 0.5054(15) 0.4255(6) 0.5070(6) 0.6453(7)

3. Two-pion Scattering

The π −π scattering calculation includes 4 contractions, with the name Direct, Cross, Rect-
angle, and Vacuum diagram [3]. The calculated results from each of these four contractions are
shown in the left panel of Fig. 1. Notice that the disconnected (vacuum) graph has an almost con-
stant error with increasing time separation, so it appears to have an increasing error bar on the log
plot, while the signal exponentially decreases. The two-pion correlators are fit with a functional
form Corr(t) = |Z|2(exp(−Et)+exp(−E(T − t))+C), where the constant comes from the case in
which the two pions propagate in different time directions. The fitted energies are summarized in
Tab. 1. In order to see clearly the effect of the disconnected graph, we also do the calculation for
the I = 0 channel without the disconnected graph. These results are shown with labels that have an
additional ′ symbol. The right panel of Fig. 1 shows the resulting effective mass for each case. It
clearly shows the two pions are attractive in the I = 0 channel and repulsive in the I = 2 channel.
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Figure 1: Left: the calculated results for the components of the correlation function defined as Direct(D),
Cross(C), Rectangle(R), and Vacuum(V). Right: the effective mass for isospin 2 (I2), isospin 0 (I0), isospin
0 without the disconnected graph (I′0), and twice the pion effective mass (2mπ ).

4. K0 to ππ Decay Contractions

The effective hamiltonian for K0 to ππ decay including the u, d, and s flavors as dynamic
variables is

Hw =
GF√

2
V ∗udVus

10

∑
i=1

[(zi(µ)+ τyi(µ))]Qi (4.1)

where the definition of the ten operators are the same as in [4], zi and yi are the Wilson coefficients,
and τ = −V ∗tsVtd/VudV ∗us. To calculate the decay amplitudes A2 and A0, we need to calculate the
weak matrix elements

〈
ππ|Qi|K0

〉
(a−1) on the lattice.
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For simplicity, we list all possible contractions of
〈
ππ|Qi|K0

〉
in Fig. 2. There are 48 differ-

ent terms, label by circled numbers from 1 to 48, and grouped in terms of geometrical structure into
type1, type2, type3, and type4. The calculation for the correlation functions of

〈
ππ(tπ)|Qi|(t)K0(tk)

〉
is then straightforward, for example, in the I=0 (use notation |I, Iz〉) case,

< 00|Q2|K0 > = i
1√
3
{− 2©−2 · 6©+3 · 10©+3 · 18©−3 · 34©} (4.2)

< 00|Q6|K0 > = i
√

3{− 8©+2 · 12©− 16©+2 · 20©+ 24©− 28©− 32©−2 · 36©− 40©+ 44©+ 48©}(4.3)

A few notes about the contractions shown in the Fig. 2:

1. The graphs themselves do not carry the minus sign from the odd number of fermion loops.

2. The dashed line stands for the contraction of colors. If there is no dashed line, it means that
the trace of color is the same as the trace of spin.

3. A line stands for a light quark propagator if it is not explicitly labeled with ’s’.

4. Using Fietz symmetry, it can be shown that there are 12 identities among these contractions,
such as 6©=- 1©, 5©=- 2©.

5. Based on charge conjugation symmetry, the average of each of these contractions is real.

6. The loop contractions in type3 and type4 are calculated with Gaussian stochastic wall sources.

Two examples of the definition of these graphs:

1© = Tr{γµ(1− γ5)L(xop,x2)γ5L(x2,xop)} ·Tr{γµ(1− γ5)L(xop,x1)γ5L(x1,x0)γ5S(x0,xop)}
2© = Trc{Trs{γµ(1− γ5)L(xop,x2)γ5L(x2,xop)} ·Trs{γµ(1− γ5)L(xop,x1)γ5L(x1,x0)γ5S(x0,xop)}}

where x0 is the position of the kaon, x1 and x2 are the position of the two pions, L(xsink,xsrc) is the
light quark propagator, and S(xsink,xsrc) is the strange quark propagator. Trc stands for color trace,
Trs for spin trace, and Tr for both spin and color trace.

Notice that the type3 and type4 graphs include quark loop integration which results in quadratic
divergence. However, we should also notice that the operator renormalization allows the mixing
with the lower dimensional operators s̄γ5d and s̄d [4], where the latter one is forbidden by parity
conservation. The subtraction of

〈
00|s̄γ5d|K0

〉
removes the quadratic divergence, and the sub-

tracted results are calculated as〈
00|Qi|K0〉

sub =
〈
00|Qi|K0〉−αi

〈
00|s̄γ5d|K0〉 (4.4)

where the subtraction coefficient αi can be calculated from the K0 to vacuum ratio 〈0|Qi|K0〉
〈0|s̄γ5d|K0〉 .

The term
〈
00|s̄γ5d|K0

〉
comes from two contractions, one connected and one disconnected,

which are labeled as mix3 and mix4 with the coefficent αi incorporated. To better visualize the
contributions from different types of contractions, we can write Eq. 4.4 symbolically as〈

00|Qi|K0〉
sub = type1+ type2+ type3+ type4−mix3−mix4

= type1+ type2+ sub3+ sub4 (4.5)

where sub3 = type3−mix3, sub4 = type4−mix4.
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Figure 2: All
〈
ππ|Qi|K0

〉
contractions. They are labelled from left to right, top to bottom by the numbers 1

to 48. If there is a label ’-/+’, then it stands for two rows with the ’-’ sign comes first. If there is an additional
label ’l/s’, then it stands for 4 rows with the order ’-l’, ’-s’, ’+l’, ’+s’, e.g. the first graph is labelled by 1©
and 3©.
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Table 2: The fitted results for the weak matrix elements of ∆I = 1/2 kaon decay. The row label with a prime
symbol means the disconnected graph is ignored. These are obtained using a source-sink separation of 14.

i 1 2 3 4 5
Qlat′

i (×10−2) -0.65(38) 1.75(14) 1.0(10) 3.39(80) -5.04(91)
Qlat

i (×10−2) -0.4(12) 1.37(52) 1.2(33) 2.9(27) -1.7(30)

i 6 7 8 9 10
Qlat′

i (×10−2) -15.9(10) 14.35(44) 44.2(11) -1.50(29) 0.92(29)
Qlat

i (×10−2) -6.4(40) 11.6(12) 34.9(24) -1.0(10) 0.66(97)

5. Results and Conclusions

Figure 3 shows the calculated result for operator Q2. The disconnected graph again makes
huge contribution to the error. We fit the K0 to ππ correlators with a single free parameter Qlat

i (a):

< ππ(tπ)|Qi(t)|K(0)>sub= Qlat
i (a)Z∗ππZke−Eππ tπ e−(mk−Eππ )t (5.1)

where Zk and mk are calculated from the correlator 〈K(t)K(0)〉, and Zππ and Eππ are calculated
from the two-pion correlator. To see the effect of the disconnected graph, it is ignored and the
calculated results are shown with an additional ′ label. The fitted results are shown in Tab. 2.
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Figure 3: Left: Results of each type contraction of
〈
00(tπ = 14)|Q2(t)|K0(tk = 0)

〉
sub. Right: The total

results of this correlation function and the fitting, where Q2 labels the total result and Q′2 labels the result
without the disconnected graph(sub4).

The value of Qi(µ) defined in the MS scheme can be calculated from Qi(µ) = Zi jQlat
j (a),

where the Non-Perturbative Renormalization(NPR) matrix Zi j and the choice of the basis follow
closely those in [4, 5]. The finite volume effect are removed by the Lellouch-Lüscher factor (F)
[6] which relates the quantity M calculated from the lattice in finite volume to the infinite volume
result A based on our convention of phase space factor:

|A|2 = 4π(
E2

ππmK

p3 ){p
∂δ (p)

∂ p
+q

∂φ(q)
∂q
}|M|2 = F2|M|2 (5.2)

where p is defined in Eππ =
√

m2
π + p2, and q = Lp/2π . Taking the free field limit, this becomes

|A|2 = 2(2mπ)
2mKL3|M|2, and the pre-factors show the different normalization of states in a box

6
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and states in infinite volume. For the isospin 0 state in our case, p2 has a large negative value.
Even though Eq. 5.2 can be analytically continued to imaginary momentum p, it does not work
well for large negative p2 as the function φ(q) becomes ill defined. We believe that this difficulty
results because the condition on the interaction range R < L/2 used to derive the Lellouch-Lüscher
factor is not well satisfied. Therefore, it is safer for us to use the free field factor in the I = 0 case
and concentrate on the statistical error from the calculation of the correlators. This problem will
naturally go away once we explicitly give momentum to the two pions or work in a larger volume.

Combining everything together, we are ready to calculate the K0 to ππ decay amplitudes,

AIeiδI = F
GF√

2
VudVus

10

∑
i=1

[(zi(µ)+ τyi(µ))Zi j(µ)Qlat
i (a−1)] (5.3)

The calculated Re(A0) and Im(A0) are shown in Tab. 3. For comparison, the calculated ∆I = 3/2
on shell decay amplitudes of mk = 0.5070(6) to EI2 = 0.5054(15) are Re(A2)=5.394(45)× 10−8

GeV and Im(A2)=−0.7792(78)×10−12 GeV.

Table 3: K0 to ππ ∆I = 1/2 Decay amplitudes in unit of GeV.
mK Re(A′0)(×10−8) Re(A0)(×10−8) Im(A′0)(×10−12) Im(A0)(×10−12)

0.4255(6) 37.8(2.1) 28.3(7.8) −62.1(5.2) −21(20)
0.5070(6) 43.5(2.4) 35.4(9.9) −67.7(5.5) −48(27)
on shell 38.7(2.1) 30.4(8.5) −63.1(5.3) −29(22)

In conclusion, our zero momentum K0(778 MeV) to π(420 MeV)π(420 MeV) decay calcu-
lation gives Re(A0) with an error of 25%. We find a ratio of Re(A0)/Re(A2) of roughly 6. Since
our pion mass is so much heavier than the physical pion mass, a much smaller factor than the ex-
perimental value of 25 is expected. To have a definite conclusion on Im(A0) from which we could
calculate ε ′, we estimate that 4 times statistics could establish a non-zero value if we believe that
the true result is not too far away from the result without the disconnected graphs.
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