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D to K semileptonic decays with HISQ action H. Na

1. Introduction

From a study oD — K, v semileptonic decays, one can calculate the form factég? = 0).

One can also determine the CKM matrix elemé¥its|, by combining theory and experimental
inputs. We continue to work on tHe semileptonic decay project that was presented at the Lattice
2009 conferencd][1]. In this article, we present a brief summary ofexent results for th® to K
semileptonic decays, which are already published in REf. [2]. So, foe metail, please see the
publication.

For this project, we ushl; = 24 1 asqtad MILC gauge configurations with two lattice spac-
ings,a~ 0.12fm “coarse” ané ~ 0.09fm “fine” ensembles. We apply the HISQ action for both the
charm and light valence quarks. For better statistics, we employ randdreomeces. We develop
a new extrapolation method to go to the continuum and chiral limit, the so called “simolia
modified z-expansion extrapolation,” which allows us to extrapolate the form fadtorthe en-
tire g? range. This method does not have the expansion problem which noriradlgérturbation
theory would have at largéx .

To study the proces® — K, v one needs to evaluate the matrix element of the charged elec-
troweak current between thi2 and theK meson statesK|(VH — A#)|D). Only the vector current
VH contributes to the pseudoscalar-to-pseudoscalar amplitude and the matrenetzan be writ-
ten in terms of two form factors, (g?) and fo(g?), wheregH = p’E‘, — pﬁ is the four-momentum of
the emitted W-boson.

2 2
(KIVHID) = f27(a?) | Pp + Pk — lVqu—lequu (L.1)

M3 — M
P
with VH = ()sy#W.. As described below, we find it useful to consider also the matrix element of

the scalar currerb= (W,

+ fo 7 (a?) g

2 2
(KISD) = ;2T K (P (12)
In continuum QCD one has the PCVC (partially conserved vector cunrelatjon and the vector
and scalar currents obey,
(V™) = (moc —mos) (S™). (1.3)

In fact PCVC is the reason why the same form fadigr¥ (q?) appears in eqg.(3.1) ar{d (1.2). On
the lattice it is often much more convenient to simulate with vector curiggigt Wqo that are not
exactly conserved at finite lattice spacings ever(Jbe= Q2. Such non-exactly-conserved currents
need to be renormalized and acquire Z-factors. We are able to carrfulbunonperturbative
renormalization of the lattice vector current by imposing PCVC. InBhmeson rest frame the
condition becomes,

(Mp — Ex) (Vg™ Z + Pk - (V') Zs = (Mo — mps) (S2). (1.4)

We have checked the feasibility of this renormalization scheme and extraetiédipary Z
andZs values for the test case B — ns,| v in Ref.[]]. However, here we focus on the form factor
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f, (q?) just atg? = 0, since this is all that is needed to extrét|. We do this by exploiting the
kinematic identityf, (0) = fo(0), and concentrating on determining the scalar form fa€ig?)
as accurately as possible. The best way to proceed is to evaluate tbaibawatrix element of the
scalar current rather than of the vector current. From{ed).(1.2) omehs,

(moc — mps) (K|SD)
M2 — M2

fe () = (1.5)

The numerator on the right-hand-side is a renormalization group invaranbioation. This is
true even in our lattice formulation, because we use the same relativistic amtibath the heavy
and the light valence quarks. Moreover, €q.](1.5) allows a lattice detetiomiret fo(g?) and hence
also of f, (0) = fo(0) without any need for operator matching. Using €q.](1.5) and going to the
continuum limit is straightforward, because our action is so highly improved &r heavy quarks.

2. Simultaneous modifiedz-expansion extrapolation

The continuumz-expansion method is a well known model-independent parameterization
method for semileptonic decay form factors. One can write the form fastor a

fo(cP) = P(qz)q)lo(qzm 3 Aol 1o 2.1)
whereP(g?) and®o(c?, to) are given functions from analyticity properties of the form factors.

The z-expansion method works well for individual ensembles, however wetdikeodifying
the fit ansatz to enable extrapolation to the physical limit. All kinematic propertegsdigpend
on g? are absorbed by, ®g, andz A natural way to distinguish between ensembles is to let
ax — ax * Dk, whereDy contains the light quark mass and lattice spacing dependence as shown
below withkmax= 2.

1
2\
fo(a) = P(P) @ (20Do+ a1D1z+ a2D>7) (2.2)
x (14 by (aEx)? + ba(aBq)*),
where,
Di = 1+cix +Choxs+ chxlog(x) + di(am)? (2.3)

1
+e(am)? + f (25M,%+ 5mﬁ> .

In eq.[2.B, we put typical analytic terms for light valenee §nd dxs terms) and sea quark mass
(6M;; and dMk terms) dependence. For the chiral logs, we only include up/down quentki-c
butions. The strange quark chiral logs are close to a constant thatecabsbrbed into the;’s.
There are two distinct sources of lattice spacing dependdaca.)? and (am;)* terms are due to
the heavy quark discretization error, afaEx )2 and (aEg)* terms are introduced to estimate the
discretization errors due to finite momentum. Since we wantatbe to be independent of the
momentum, the@Ex terms are placed separately outside #fexpansion. We include lattice spac-
ing dependent terms up to fourth power, however we tested with even highes and confirmed
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Figure 1: Chiral/continuum extrapolation dfy(g?) versusE,% from the modifiedz-expansion ansatz. The
data points are coarse (left) and fine (right) lattice poimtsree individual curves and the extrapolated band
are from a fit to all five ensembles.

that the higher terms are negligible. We have carried out simultaneous fitshe alata using the
above ansatz and find that very good fits are possible[Fig. 1 showssthiéing fit curves for each
ensemble and the chiral/continuum extrapolated curve with its error barfel(fgy) versusgZ (we
show separately the coarse and fine ensembles in order to avoid too mitef).con the left panel

of Fig.[3 we showfo(g? = 0) for the five ensembles and in the physical limit. One sees that within
errors this quantity shows little light quark mass dependence and.8% lattice spacing depen-
dence. We also test the chiral/continuum extrapolation with partially querdaiead perturbation
theory (PQChPT). This traditional method gives results in very goodceageat with the modified
z-expansion extrapolation method (see the right panel of Fig. 2).

3. f1(0), |Veg, and unitarity tests

3.1 f,(0) = fo(0)

From the simultaneous modifiggexpansion extrapolation method, we fifid(0) = 0.748+
0.019 in the physical limit foD® — K~lv, and f, (0) = 0.746+0.019 forD* — K%lv. We take
an average over these two channels and our final result in the phisitdlecomes,

fP~K(0) = 0.747+0.011+0.015 (3.1)

The first error comes from statistics and the second error represgstengatic errors. Tablg 1
summarizes the error budget. One sees that the largest contributions ttalrertar come from
statistics followed byam.) and(aEx) extrapolation errors.

In order to calculate the form factor, we have to put in meson masses kpenment and also
from our lattice simulations. For example, we need experimdnht#&l, andr meson masses to get
the form factor at the physical limit, ariel, D, andK meson masses from the lattice calculations
are used to fit at non-zero lattice spacing. In Tdple 1, “Input meson’mefsss to errors induced
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Figure 2: (left) fo atg? = O for the five ensembles and in the physical limit. (right) Gamisons offy(q?)
in the physical limit from the-expansion and the ChPT extrapolations.

Type | Error |
Statistical 15%

Lattice scaler; andri/a) | 0.2 %
Input meson mass 0.1%
Light quark dependence| 0.6 %
Strange quark dependence0.7 %
Sea quark dependence| 0.4 %

am, extrapolation 1.4 %
aEx extrapolation 1.0%
Finite volume 0.01%
Charm quark tuning | 0.05 %
Total 2.5%

Table 1: Total error budget.

from these input meson masses. In the fit ansat4, dq. 2.3, there areu:'aght(q andci3), strange
quark @iz), and sea quark dependent terni$.(Each systematic error due to these terms is shown
on the fourth to sixth line in the table. Lattice spacing dependence erroestneated separately
for (am,)" and(aEx )’ type contributions.

In the fit ansatzxlog(x ) is the most infrared sensitive term. We calculate the pion-tadpole
loop integral both at finite volume and at infinite volume and compare these to tstimegfinite
volume effects. For the charm quark mass tuning error, we calculatertihddiotor with a different
charm quark massm, = 0.629, on the C3 ensemble, and compare with the result with the tuned
am, = 0.6235.

In their papers both BaBaf][4] and CLEO{¢ [5] have converted theirsueanents of ;. (0) *
|Ves| into results forf, (0) using values fofVeg| fixed by CKM unitarity. For this CLEO-c uses
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Figure 3: (left) Comparisons ofy(g? = 0) with other calculations and experiments. (right) Companisof
our new|Vgg| with values in the PDGJ6].

the 2008 PDG CKM unitarity value d¥s| = 0.9733423) and obtainsf?~*(0) = 0.7399) and
BaBar usegVcs| = 0.97293) leading tof, (0) = 0.737(10). On the left panel of Fig[]3 we plot
our result, eq[(3]1), together with earlier theory results from the laffjcer{@]feom a recent sum
rules calculation and with the BaBar and CLEO-c numbers. One sees theglmome reduction
in theory errors which are now small enough so that the agreement bethamy and experiment
already provides a nontrivial indirect test of CKM unitarity.

3.2 Direct Determination of |Vg| and unitarity tests

As experimental input we tak&, (0)  |Ves| = 0.7198) from CLEO-c [§] andf_ (0) * [Ves| =
0.717(10) from BaBar [#]. For the latter we have multiplied BaBar's quotid0) with their
quoted CKM unitarity value forVgs|. Averaging between the two experiments we ds€0) x
Ves| = 0.718(8) together with eq[(3]1) to extrapt.s|. One finds,

Ves| = 0.9614-0.011+0.024, (3.2)

in good agreement with the CKM unitarity value of 0.97345({b) [6]. The éimsor in (3.2) is from
experiment and the second from the lattice calculation of this article. This is/gwecise direct
determination ofV.s|, made possible by the many advances in lattice QCD that are described in
this article together with the tremendous progress in recent experimentasai® semileptonic
decays [KU[5]. On the right panel of F{d. 3 we plot several previdtectideterminations ofV/q|
from the 2010 PDG[]6] together witf (3.2) and the CKM unitarity value.

Using the new value ofV,¢, €q.[3.R), and the current PDG valu@éy| = 0.230(11) and
|Vep| = 0.040613) one finds,

|Vcd|2 + |Vcs’2 + |Vcb|2 = 0-978(50) (3'3)
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for the 2nd row. And similarly for the 2nd column, witkfs| = 0.22529) and|V;s = 0.038721)
one gets,
Vsl + [Vesf? + Ms| = 0.976(50). (3.4)

4. Discussion

We have carried out a successful calculationBor K,lv semileptonic decay form factors
using the HISQ action for both the charm and light quarks Wth= 2+ 1 asqtad MILC gauge
configurations. The total error fof, (0) is estimated here to be 2.5%. This is a factor of four
times smaller than in the previous lattice calculation of Rgf. [3]. This was adbiewecause of
applying several new methods and techniques. We employ the HISQ actibntfocharm and
light quark actions and a scalar current rather than the traditional vegtoent. Because of these
new methods, we obtain results with smaller discretization errors and notoparatching. We
also developed the modifieexpansion extrapolation method, which is crucial to decrease errors
due to the discretization, chiral / continuum extrapolation and parameteriz#tibe form factor.

In order to decrease statistical errors, we apply random-wall soarmeperform simultaneous fits
with multiple correlators and’s. If we compare with the error budget of Rdf| [3], then we see the
statistical errors reduced from 3% to 1.5% and the extrapolation and pinéra&on errors from
3% to 1.5% as well. The biggestimprovement is in the discretization errorsoldi@liscretization
errors have now been reduced from 9% to 2%. We note that the cootéip¢ discretization
errors is different in Ref[[3] compared to ours. In R¢f. [3], thefireate the discretization errors
by power counting, since they calculate at only one lattice spacing. HewesVier, we actually
perform continuum extrapolations with correction terms for the discretizaffatts. As a result,
we do not have discretization errors per se, but instead extrapolatiors elue to higher order
correction terms.

Again, this is a short version of Ref] [2]. For more detail and full distws, please see the
publication.
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