
P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
3
2
2

Double-pass variants for multi-shift BiCGstab(`)

Simon Heybrock∗†

Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
E-mail: simon.heybrock@physik.uni-regensburg.de

In analogy to Neuberger’s double-pass algorithm for the Conjugate Gradient inversion with multi-
shifts we introduce a double-pass variant for BiCGstab(`). One possible application is the overlap
operator of QCD at non-zero chemical potential, where the kernel of the sign function is non-
Hermitian. The sign function can be replaced by a partial fraction expansion, requiring multi-
shift inversions. We compare the performance of the new method with other available algorithms,
namely partial fraction expansions with restarted FOM inversions and the Krylov-Ritz method
using nested Krylov subspaces.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.
†Supported by the DFG collaborative research center SFB/TR-55 “Hadron Physics from Lattice QCD”.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:simon.heybrock@physik.uni-regensburg.de

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
3
2
2

Double-pass multi-shift BiCGstab(`) Simon Heybrock

1. Introduction and Motivation

In this contribution we present double-pass variants for the multi-shift inverter BiCGstab(`)1

which, in some cases, can perform better than the conventional single-pass. The method is an ana-
logue to Neuberger’s double-pass Conjugate Gradient (CG) method [1, 2]. The use of BiCGstab(`)
instead of CG can be a speed advantage (for Hermitian matrices) or necessary (for non-Hermitian
matrices). One possible application is the computation of quark propagators for a set of distinct
masses. Here, however, we focus on computing the overlap operator of QCD. At non-zero quark
chemical potential, µ 6= 0, it is defined as

Dov(µ) = 1+ γ5 sign(γ5Dw(µ)) , (1.1)

where Dw(µ) is the (Wilson) Dirac operator with chemical potential. For µ 6= 0 the matrix γ5Dw(µ)
is non-Hermitian. One way to compute the sign function of such a matrix, acting on a given vector
b, is via a partial fraction expansion (PFE),

f (A)b≈
Ns

∑
s=1

ωs

A+σs
b, (1.2)

where we are especially interested in the case of A = (γ5Dw)2 with f (A) = 1/
√

A, since signz =
z/
√

z2. The vectors (A+σs)−1b for a set of shifts {σs} can be approximated by iterative inverters
which find solutions in a Krylov subspace, defined as

Kk(A,b) = span(b,Ab, . . . ,Ak−1b). (1.3)

A crucial feature of Krylov subspaces is their shift invariance, Kk(A + σs,b) = Kk(A,b), which
allows for so called multi-shift inversions, where one Krylov subspace suffices to compute (A +
σs)−1b for a set {σs} with little overhead per additional shift. We will refer to methods employing
Eq. (1.2) as PFE methods.

2. Double-pass algorithm

As a starting point, we consider established algorithms to compute the sign function of a non-
Hermitian matrix, (i) the Krylov-Ritz method with nested Krylov subspaces, introduced in [3], (ii)
PFEs with FOM inversions, introduced in [4] and (iii) PFEs with BiCGstab(`) as inverter. The latter
has so far not been considered in the context of the sign function. For details on the BiCGstab(`)
method see [5], a version with shifts was introduced in [6]. Benchmark results are given in Fig. 1.
The nested Krylov-Ritz algorithm outperforms both PFE methods, which is somewhat surprising
since all rely on a similar Krylov subspace.2 We can gain more insight by analysing the bad
performance of BiCGstab(`) in this case:

• Denote by Ns the number of shifts and by Ms the number of outer iterations of the BiCGstab(`)
algorithm until the system with shift σs is converged. Then, the multi-shift version has
∑

Ns
s=1 Msl(0.5l +4.5) “axpy” operations (y← αx+ y, for scalar α and vectors x and y) more

than the BiCGstab(`) algorithm without shifts.
1` is the degree of the Minimal Residual polynomial in the algorithm
2Note however that the employed single-pass (nested) Krylov-Ritz method requires a huge amount of memory.

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
3
2
2

Double-pass multi-shift BiCGstab(`) Simon Heybrock

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0 1 2 3 4 5

A
cc

ur
ac

y

CPU time [s]

BiCGstab(l=1) PFE
Nested Krylov-Ritz

FOM PFE

Figure 1: Accuracy vs. computation time for the overlap operator on a 43× 8 lattice, β = 5.32, µ = 0.05
with the Neuberger PFE. The number of poles Ns is chosen minimal for the desired accuracy as in [4]. In
this plot it ranges from 10 (accuracy 0.01) to 58 (accuracy 10−10). The 4 eigenvalues smallest in magnitude
are deflated in advance.

• BiCGstab(`) requires 2l +5 vectors and the multi-shift version has Ns(l +1) additional shift
vectors, where typically Ns = O(10). These figures should be seen in relation to the typical
cache size of current processors (O(1 MByte)) and the size of a vector, e.g., 50 kByte (local
volume 44) or 800 kByte (local volume 84). In a typical case not all shift vectors fit into
cache and the access to main memory can become the bottleneck of the algorithm.

To tackle these performance restraints one can try a double-pass approach in analogy to Neu-
berger’s double-pass algorithm for a multi-shift CG inversion. Schematically the idea is as follows:
The quantity computed in Eq. (1.2) and approximated in a Krylov subspace is

Ns

∑
s=1

ωs(A+σs)−1b≈
Ns

∑
s=1

ωs

N

∑
n=1

w(n)
s , (2.1)

where N is the number of iterations in the inverter and w(n)
s is a vector for shift s in iteration n. To

remove s dependent vectors one could try to swap the sums over s and n, however w(n)
s is given by

a recursion relation,

w(n)
s = α

(n)
s w(n−1)

s +β
(n)
s v(n) =

n

∑
i=1

γ
(n)
s,i v(i), (2.2)

where v(n) is an unshifted iteration vector. In the last step the recursion of the vectors w(n)
s was

resolved. By combining Eqs. (2.1) and (2.2) and summing over s (and n), all vectors depending on
s are removed from the algorithm. However, the coefficients γi = ∑s,n γ

(n)
s,i are not known until the

end of the iteration. There are two options

1. (double-pass): Follow Neuberger’s approach by running the algorithm once to obtain γi. In
a second pass generate the vectors v(i) again and compute ∑i γiv(i).

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
3
2
2

Double-pass multi-shift BiCGstab(`) Simon Heybrock

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 10 15 20

C
P

U
 ti

m
e

[s
]

Number of shifts (Ns)

1-pass

2-pass

pseudo-2-pass

Figure 2: Computation time vs. Ns for fixed Ml = 256 for a 43× 8 lattice (Wilson Dirac operator) for all
three BiCGstab(`) variants. Results are given for l = 1,2,4,8 with lines solid to dotted.

2. (pseudo-double-pass): Compute the coefficients γi as in double-pass, but store all v(i) during
the first pass instead of recomputing them in a second pass.

Both methods remove all s-dependent vectors from the algorithm, hence reducing the number of
operations and number of vectors to be held in cache. In our case, to obtain the coefficients cor-
responding to the (schematic) coefficients γi, the recursion has to be solved for the BiCGstab(`)
algorithm. The result is given in Sec. 4.

3. Cost analysis and benchmarks

The number of operations (scalar ones are omitted) and vectors of the multi-shift BiCGstab(`)
algorithms are given in the following table (M denotes the number of outer iterations of the algo-
rithm and the dimension of the Krylov space is 2Ml):

Method #Mv #axpy #dot-products #vectors
1-pass 2Ml Ml(1.5l +5.5)+∑

Ns
s=1 Msl(0.5l +4.5) Ml(0.5l +3.5) 2l +5+Ns(l +1)

2-pass 4Ml Ml(1.5l +5.5)+Ml(1.5l +4.5)+2Ml Ml(0.5l +3.5) 2l +5
pseudo-2-pass 2Ml Ml(1.5l +5.5)+2Ml Ml(0.5l +3.5) 2l +5+2Ml

The number of vectors alone is not always meaningful: In single-pass a considerable subset3 of the
Ns(l +1) vectors is accessed in each iteration of the algorithm. In pseudo-double-pass each of the
2Ml vectors is written and read exactly once, in total. That is, the access pattern of pseudo-double-
pass requires less memory access than single-pass, even though many more vectors are involved.

As a naive test of the figures given in the table we consider the algorithm runtime for fixed
Ml with a varying number of shifts, given in Fig. 2. The two-pass and pseudo-two-pass runtime
is largely independent of Ns. The pure operation count of two-pass would yield an almost doubled
computation time compared to pseudo-two-pass. In practice, however, it is less since no (or less)

3depending on `, and on the removal of converged systems from the iteration

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
3
2
2

Double-pass multi-shift BiCGstab(`) Simon Heybrock

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0 1 2 3 4 5

A
cc

ur
ac

y

CPU time [s]

1-pass BiCGstab(l=1)
1-pass BiCGstab(l=8)
2-pass BiCGstab(l=1)
2-pass BiCGstab(l=8)

pseudo-2-pass BiCGstab(l=1)
pseudo-2-pass BiCGstab(l=8)

Nested 1-pass
Nested 2-pass

FOM

Figure 3: Accuracy vs. computation time for the overlap operator (43×8 lattice with β = 5.32, µ = 0.05).
The timings are averaged over 200 independent gauge configurations. Note that an extreme case with little
deflation (4 eigenvalues smallest in magnitude) was chosen for this plot where many poles are required (as
before Ns is scaled from 10 to 58), yielding a large speed advantage of the double-pass algorithms. When less
poles are needed (e.g., for small µ when the Zolotarev PFE can be used instead of the Neuberger expansion)
the performance difference is often smaller.

main memory access is required. An effect of the cache size can be seen from the single-pass l = 1
curve. The slope changes in the vicinity of Ns = 10, which is consistent with the cache size of
4 MByte and the size of a vector of 100 kByte. As a further observation, the relative performance
loss for large ` is much smaller in the double-pass methods compared to single-pass, which is not
surprising since the number of required vectors increases with `.4

As a more realistic benchmark we compute the overlap operator for given configurations in
Fig. 3. The double-pass and pseudo-double-pass BiCGstab(`) algorithms perform as well or even
better than the nested double-pass and single-pass algorithms, respectively. Note that also the
respective memory requirements are similar. In double-pass the performance does not degrade for
l > 1 as it does for single pass. To explore differences between the nested Krylov-Ritz method
and the BiCGstab(`) methods a series of benchmarks was performed, where both the number of
deflated eigenvectors and the chemical potential µ were varied. The tests indicate that BiCGstab(`)
profits more from deflation than the Krylov-Ritz method does. On the other hand, for large µ ,
BiCGstab(`) tends to stagnate earlier than Krylov-Ritz.

Finally we give results of a larger-scale simulation in Fig. 4. As before, pseudo-double-pass
BiCGstab(`) is the algorithm performing best. The optimal ` depends on the number of cores Nc.
Due to memory limitations for small Nc and network limitations for large Nc, there is an optimal
Nc minimizing the total CPU time.

4. Algorithm details

We follow the notation in Ref. [6] where also a listing of BiCGstab(`) is given. Upper indices

4Since we work at fixed Ml this plot does not tell which ` is optimal, since the convergence rate depends on `.

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
3
2
2

Double-pass multi-shift BiCGstab(`) Simon Heybrock

 500

 1000

 1500

 2000

 2500

 3000

 3500

 8 16 32 48 64 96 128

T
ot

al
 C

P
U

 ti
m

e
(w

al
l c

lo
ck

 ti
m

e
x

N
c)

 [s
]

Number of processor cores (Nc)

1-pass, l=1
1-pass, l=8
2-pass, l=1
2-pass, l=8

pseudo-2-pass, l=1
pseudo-2-pass, l=8

Nested 1-pass
Nested 2-pass

Figure 4: Total computation time vs. number of cores for the nested Krylov-Ritz method and pseudo-
double-pass BiCGstab(`) for l = 1 and 8. The simulation uses a 123× 24 lattice, β = 5.71, µ = 0.016667
with 44 deflated eigenvalues. The accuracy is 10−10, obtained with Ns = 16 shifts. The dimension of the
Krylov subspace is about 2000 for BiCGstab(` = 1,8) as well as for nested Krylov-Ritz. The benchmarks
where done on an Opteron 2354 Cluster (2.2 GHz, 2 quad-core processors per node, 16 GByte RAM per
node, Infiniband network). Lines are drawn to guide the eye.

m j denote iteration j of BiCG part and outer iteration m. Define the coefficients

Am j = ∑
s

ωs
1

(ϑ sϕs)m j

l−1

∑
j′= j

(αs)m j′
(

j′

∏
k= j+1

(−β
s)mk

)
, (4.1)

Bs
m =

M−1

∑
n=m+1

{
l−1

∑
j=0

(αs)n j

(
j

∏
k=0

(−β
s)nk

)}{
n−1

∏
k=m+1

(
l

∑
j=0

−γ k
j

(ψs)k σ
j

s (−1)l− j

)
l−1

∏
k′=0

(β s)kk′
}

, (4.2)

Ds
mi j =

−γ m
i

(ψs)m
1

(ϑ sϕs)m j

l−1

∏
k= j+1

(−β
s)mk, Es

m j =
−1

(ψs)m

(
l

∑
i= j+1

γ
m
i σ

i− j−1
s (−1)l−i

)
l−1

∏
k= j+1

(β s)mk, (4.3)

Fs
m j =

1− (αs)m jσs

(αs)m j(ϑ sϕs)m j , Gs
m j =− 1

(αs)m j(ϑ sϕs
new)m j , (4.4)

where γ0 =−1, and a matrix

(Mm) jk =−
j−1

∑
q=k

α
mq

(
q

∏
p=k+1

(−β
mp)

)
, j,k = 0, . . . , l−1. (4.5)

Then the contribution to ∑s ωsxs from the BiCG part is given by

xBiCG =
M−1

∑
m=0

l−1

∑
j=0

{
l−1

∑
p= j

p

∑
k= j

[
Amp((Mm) j)pk +

j

∑
i=0

(
∑
s

ωsBs
mDs

mip

)
((Mm) j−i)pk

]

×

[
(r j)m j−

k−1

∑
q= j

α
mq

(
q

∏
p′= j+1

(−β
mp′)

)
(u j+1)m j

]

+
(

∑
s

ωsBs
mEs

m jF
s
m j

)
(r j)m j +

(
∑
s

ωsBs
mEs

m jG
s
m j

)(
(r j)m j−α

m j(u j+1)m j)} . (4.6)

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
3
2
2

Double-pass multi-shift BiCGstab(`) Simon Heybrock

All operations involving the vectors us
i can be removed from the original algorithm. The final

result is given by adding xBiCG to the contributions of the seed system and the MR-part of the algo-
rithm, ∑s ωsxs

MR, which is computed trivially. For reference an implementation of the algorithms is
provided online at http://sourceforge.net/projects/bicgstabell2p/.

5. Conclusions

We have presented an extension of the double-pass trick from Conjugate Gradient to the
more general BiCGstab(`). While initially PFE methods looked inferior to the nested Krylov-Ritz
method in the non-Hermitian case, our new (pseudo-)double-pass BiCGstab(`) is a method with
similar performance. Our benchmarks concentrated on the overlap operator where pseudo-double-
pass performs as well or even better than the nested Krylov-Ritz method on the tested architectures.
Current supercomputers might have enough main memory such that pseudo-double-pass is feasi-
ble, but this will depend on details of the simulation. Large values of ` yield less overhead in the
double-pass methods compared to single-pass. This could boost the application of the algorithm
in problems where l > 1 is crucial for convergence. We plan to investigate the efficiency of the
double-pass BiCGstab(`) algorithms for other functions aside from the inverse square root.

As a closing remark let us mention that a pseudo-double-pass method can also be used instead
of the usual (double-pass) Conjugate Gradient method. This extension seems trivial, though we are
not aware of any mention in the literature.

Acknowledgements

I want to thank Jacques C.R. Bloch and Tilo Wettig for support, advice and discussions.

References

[1] H. Neuberger, Minimizing storage in implementations of the overlap lattice-Dirac operator, Int. J.
Mod. Phys. C 10 (1999) 1051–1058, [hep-lat/9811019].

[2] T.-W. Chiu and T.-H. Hsieh, A note on Neuberger’s double pass algorithm, Phys. Rev. E 68 (2003)
066704, [hep-lat/0306025].

[3] J. C. R. Bloch and S. Heybrock, A nested Krylov subspace method to compute the sign function of large
complex matrices, Comput. Phys. Commun. (to be published) [arXiv:0912.4457].

[4] J. C. R. Bloch et. al., Short-recurrence Krylov subspace methods for the overlap Dirac operator at
nonzero chemical potential, Comput. Phys. Commun. 181 (Oct., 2010) 1378–1387,
[arXiv:0910.1048].

[5] G. L. G. Sleijpen and D. R. Fokkema, BiCGstab(`) For Linear Equations Involving Unsymmetric
Matrices With Complex Spectrum, Electronic Transactions on Numerical Analysis 1 (1993) 11–32.

[6] A. Frommer, BiCGStab(`) for families of shifted linear systems, Computing 70 (2003), no. 2 87–109.

7

http://sourceforge.net/projects/bicgstabell2p/
http://xxx.lanl.gov/abs/hep-lat/9811019
http://xxx.lanl.gov/abs/hep-lat/0306025
http://xxx.lanl.gov/abs/0912.4457
http://xxx.lanl.gov/abs/0910.1048

