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In order to get an estimate of the homogeneity of the didfidbuof matter in a fast hadron, we
compute the correlation of the saturation scales betwdfmmatit impact parameters. We find that
these correlations are quite strong: The saturation ssakedrly uniform in a wide domain around
each point in impact-parameter space. We provide analygiqaressions for the correlations,
which are supported by numerical simulations. Althoughrthmerical calculations are done for
specific saturation models which are obtained from QCD alitastic simplifications, we expect
our analytical formulas to be correct for full QCD in asymptdimits, since their derivation
requires only a few general assumptions.
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1. Introduction

Phenomenological models for the very high-energy regime of QCD wiatneagion effects
become important (see Ref] [1] for a recent review) are usually buittoome parametrization of
the elastic dipole-hadron scattering amplitubgy,r,b) which is a function of the rapidity of
the scattering, of the sizer of the dipole, and of the impact parameberThis amplitude is then
related to the observables through appropriate convolutions with the wagtdns that describe
the incoming objects. In the simplest of these models, due to Golec-Biern&asithoff [2], the
dipole amplitude is assumed to have the form

T(r,y,b) = 1— e ""EWb/4, (1.1)
where the momentum scal, called the saturation momentum, is parametrized as
Q2(y,b) = 1 Ge\? x B(R—b)e* VY0, (1.2)

The constant®, A andyg are determined from a fit to the inclusive deep-inelastic scattering data.
The spatial distribution of matter in the plane transverse to the collision axis isledén theb-
dependence of the saturation momentum. Beanction used by Golec-Biernat and Wusthoff is
sometimes changed to a smoother distribution in such a way that the model belalspdescribe
semi-inclusive diffractive data. In any case, the fluctuations betwetaretit points in transverse
space are completely neglected in all these models. Note that this may nottdesrpfor standard
phenomenology since most of the observables in deep-inelastic scatteybegne single point
in impact-parameter space in each event. But clearly, independently méipleemology, we would
like to understand better how the matter is distributed in a fast hadron.

We shall first explain why fluctuations of the parton densities are expéetiwdeen different
impact parameters, then we shall provide a heuristical discussion ofrtheofdhese fluctuations,
for which we have been able to write a parameter-free formula valid in soynepéstic limit.

2. Picture of afast hadron/nucleus

Let us consider a fast hadron or nucleus probed by a color dipolzef gwhich may be
seen as a component of a virtual photon of virtualty- 1/r) at very high rapidityy. We go to
a frame in which the probing dipole is almost at rest and we require that theimpaameter be
some fixedb (see Fig[]1). The scattering probabilifyis roughly proportional to the local density
n of partons in the corresponding phase-space &k, y,b) ~ a2n(r,y,b). It proves useful to
seeT as a probability of interaction between the dipole and a fixed configuratipartdns: The
physical amplitude measured in experiments is thexveraged over events (i.e. over the partonic
configurations; see Ref][3] for a review). If the rapidity is high erfguge know that at each,
T has the shape of a front connecting 1 (black or saturated regime)sfot/Qs(y, b) to O (color
transparent or dilute regime) for« 1/Qs(y,b). The saturation momentu@s(y, b) determines the
transition. It grows exponentially witl, which means that the position of the wave front moves
linearly along the axis lod./r?) when the rapidity increases. It was first conjectuféd [3] and then

IThroughout our discussiois actually the rapidity multiplied by the factar = asN¢/ 7.
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Figure1l: Schematic picture of a fast-moving hadron (left; the calatisks represent partons) and scattering
amplitude as a function of the siz@f the probing dipole at two impact parametbtsh, for a fixed rapidity

y (right).

checked numericallyJ4] that to a good approximation, at each point in ingEaetneter space, the
only variable relevant to the evolution of the amplitubevith the rapidityy is log(1/r?).

In the regions in whicl ~ a2, few partons are probed, hence the further evolutioh wfith
the rapidityy is stochastic. IT > a2 instead, many partons populate that phase-space region, and
the evolution ofT is of deterministic nature: A mean-field approximation of the QCD evolution
can be taken. Thus for values oof the order of the inverse saturation momentdmhas the
shape of a smooth (deterministic) curve traveling towards smaller valuesHdwever, because
of the fluctuations in the tail of the fronQs is a stochastic variable for the rapidity evolution.
Fluctuations in the dilute region of phase space propagate towards treerdgitn and affect the
saturation momentum typically after an additional evolution @wex log?(1/a2) units of rapidity.

They result in a random diffusion @k = log Qs of variance(p?). ~ Dy, whereD can be computed
from QCD [3].

These fluctuations determine a dispersiopgofrom event to event. But stochasticity is also
expected to manifest itself by differentiating the points bayandb, in impact-parameter space,
creating a dispersion @ in the transverse plane. In order to characterize these fluctuations, we
shall now compute the correlator, = ((ps(b1) — ps(b2))?) at fixedy.

3. How correlations may occur: heuristic discussion and analytical formulas

Let us examine how correlations between two points in transverse bpacelb, may build
up. We definedb = |b, — by|. If Ab < 1/Qs (Qs is the saturation momentum at eith@ror by),
then obviouslyQs(b1) = Qs(bz) ando?, = 0. If Ab > 1/Qs instead, then the evolution around the
impact parametds; can influence the evolution aroubg only if a parton ab; splits into a parton
of size of the order ofAb. But the saturation of the density of partons of sizes larger thi&x 1
disfavors such splittings. Hence we may think that the evolutions decouptmass the saturation
radius 7 Qs becomes smaller thatib. Assume that this happens at rapidity Then fory < yp,
0%, =0, and fory > yo, 02, >~ (p?)c + (p2)c ~ 2D(y — Yo). One may fix the rapidity and vary
the distance\b instead: TheroZ, ~ 2Dlog(AbQs)/x’ () for log(AbQs) > 0 (see the dotted line
in Fig.[3), which suggests that the characteristic distance scale for tfedatimms in the transverse
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Figure2: Sketch of the correlations as a function of the logarithmhefdistancéb = |b; — by | in impact-
parameter space scaled by(k. For AbQs > 1, the pointsb; andb;, are statistically independent. The
dotted line represents what one would naively expect if flattbns affected the saturation scale as soon as
AbQs > 1. (D is the diffusion coefficient ops for a single front, namelD ~ (p2)¢/y). The continuous
line takes into account the delay induced by the propagatidime fluctuations, which results in an effective
persistence of the correlations.

plane is YQs. x(yo) is a particular eigenvalue of the BFKL kerrne) and x'(y») the asymptotic
rate of change ofps) with the rapidity [B].

However, this is not yet the correct answer. Indeed, as recallemeyebr fluctuations to
be able to differentiaté; andb,, Ay ~ log?(1/a2) extra units of rapidity are needed after the
rapidity yo at whichAbQs(yo) = 1. Hence the effective decoupling of the saturation momenta is
expected later in rapidity, or for larger distandds The correlations would persist over distances
Ab ~ 109 (1/a2) /¢ (see the full line in the sketch of Fifj. 2).

Extending the phenomenological theory for stochastic fronts develogeefifg], we are able
to fully compute the correlatcarlz2 = ((ps(b) — ps(b+Ab))?). One way of writing the result ig][6]

dq
2
O12= / 28x" (yo)|log(1/ad)/vo+og(8bQs)| | "~ [—(9q194(0|0|)] ) (3.1)
3y2|09 (1/ag p{ 2)( (o) log?(1/ag) ]} g
whered, is a particular Jacobi theta function. The interesting limiting behaviors read
21 x" (yo) log(AbQx) 201 /02
62, ~ | AH(nlogii/ar o for log(AbQs) > log™(1/as)
4 28X’ (o) X'(w)log*(1/as)
3% %exp(—m> for log(1/a?) < log(AbQs) < log?(1/a2).

(3.2)
Comparing the expression of, in the largeAb limit to the varianceDy of ps, we find thato?, is
actually equal to Rlog(AbQs)/x’ (o) for large logAbQs). From the second limiting expression,
it is obvious thaio?, is close to zero for log\bQs) < log?(1/a?).

In order to check these expressions, we performed numerical simulationsdels which
possess the main characteristics of the QCD evolution while being simple enoadjbvtcfor
robust Monte Carlo simulations (see Réf. [6] for details). We found gepematching with the
parameter-free analytical resuft {3.1) in the limit (@ga?) > 1. For larger and more realistic
values ofas, the persistence of the correlations is still seen in the numerical simulatidregrbe
parameters should be modified in the analytical expressions and tunedtmatar our lack of
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Figure 3: Comparison of a numerical Monte Carlo simulation and oufditcal formula. The constant in
the parametek (see Ref.[[p] for the definitions af andd), which should be equal to I¢t)/a2)/y, for very
smallas, has been shifted by a phenomenological constant. Oncis thigie, we get a very good agreement
between the two calculations.

understanding of subleading corrections important for finitélgg?). We show such a calculation
for as = 0.1 in Fig.[3, compared to a variant of E{. (3.1).

4. Conclusion and outlook

The main result of our work is that the characteristic distance of the ctomean the trans-
verse plane is not/Qs as one would naively expect, but rather @xtmgz(l/asz)] /Qs (c being a
known constant), which is parametrically much larger tha@l Our results are valid for large
log(1/a2), and for distanceAb much smaller than the typical confinement scalddcp-

The goal of our work was to understand the fundamentals of the QCDnugaan transverse
space, without thinking priori of any application to phenomenology. Let us however note that
recently, a diffractive deep-inelastic scattering observable was pedpthat would directly probe
the correlations which we have computfld [7]. (A calculation of theseletioas in the framework
of the B-JIMWLK formalism []1] whicha priori neglects the fluctuations discussed in this paper
was also performed.) Also, these correlations may play an important rolevyen collisions.
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