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1. Threshold resummation in physical evolution kernels

Consider a generic deep inelastic scattering (Di&)-singletstructure functionZ (x, Q%) =
{2F;(x, @), F2(x, Q%) /x} at largeQ? >> A?. We shall be interested in the elastic limit> 1 where
the final state mas@/? ~ (1 —x)Q? << Q2. In this limit, large threshold IfL — x) logarithms
appear. Their resummation is by now standard [1, 2], butllysparformed in moment space.
However, the result can also be expresandlytically in momentum spaes the level of so-called
“physical evolution kernels” which account for thlysicalscaling violation:

0.7 (x, Q%) ~ [tdz 2y o o _
oz —/X - Kzas(Q)) #(x/2Q7) =Ka 7, (1.1)
where the “physical evolution kerneK (x, as) (as = as/47 is the MS coupling) embodiesll the

perturbativeinformation about#. Forx — 1 threshold resummation yields [3]:

S (1-%Q7)

T x +BY'S(as(Q?) 5(1 - %), (1.2)

K(x,a5(Q%)) ~ [

wherej(QZ) is a “physical anomalous dimension” (a renormalizatioresed invariant quantity),
related to the standard “cusgi(as) = 3°; Aidl and final state “jet functionB(as) = ¥7* ; Bial
anomalous dimensions by:

00

2
S (@) =A(as(@)) + B (as(Q?) % =2 iia(Q). (1.3)

The renormalization group invariancey(Qz) yields the standard relation:

Z((1-%Q%) = j1as+a5[—j1Bolx+ j2] (1.4)
+ a3[j1B5Ls — (J1B1+ 2j2Bo)Lx + ja] + O(a) ,

whereLy = In(1—x) andas = as(Q?), from which the structure ddll the eikonal logarithms in
K (x,as(Q?)), which can be absorbed into temglescale(1 — x)Q?, can thus be derived.

However, no analogous result holds at the next-to-eikavall (except [4] at larggy). Indeed,
expanding

K (x,8s) = Ko(X)as +Ki(x)aZ + Ka(x)aS + 0/(a8) , (1.5)
theKj’'s can be determined as combinations of splitting and caeffidunctions. One gets:

K()(X) = P()(X) =kio pqq(x) SAVY 5(1—X) , (16)

with k1o = A and pgq(X) = %5 + %(1— X). Moreover forx — 1 one finds [5, 6], barring delta
function contributions:

K1) = 7 (keakx+ ko) + (Poal+ o) + (1~ X)L) (L.7)

X
Ka(x) = 7 (Keolx +ka1b+ kso) + (na2l§ + haal+ hao) + (1 - X)LY)
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Despite the similar logarithmic structure, thext-to-eikonalogarithmsh;; cannot[5] be obtained
from a standard renormalization group resummation anakdo the one used (eq.(1.4)) for the
eikonallogarithmsk;;.

2. An alternative approach: the modified physical kernel

Instead, consider [7] a modified physical evolution equmtsimilar to the one used in [8] (see
also [9]) for parton distributions:

0F(x,Q?)  [tdz 2 o~ 2

e = [ SKea@)M) Foyz/2) (2.1)
where the arbitrary parametarshall be set to 1 at the end. Expandigidy, Q%/7") aroundz = 1,
one can relat& (x,as, A ) to K(x, as):

K(x,as,A) = K(x,as) + A[Inx K(x,as,A )] @ K(X,as) + ... . (2.2)

Solving perturbatively, one finds that far— 1 the corresponding expansion coefficiektéx, A)
satisfy the analogue of eq.(1.7), with te@mecoefficientskji’s of the eikonal logarithms, but with
the coefficients of théeadingnext-to-eikonal logarithms given by:

ho1(A) = ha1— AKS, (2.3)

3
hao(A) = hgo— A §k21k10 .

Setting nowA = 1, one observes that both;(A = 1) andhz(A = 1) vanish which means that
hpy = k3y = A2 = 16C2 and hgz = 3kaikio = —3BoAZ = —24B,C2, which agree with the exact
results in [5, 6]. It should be stressed that, whereasis contributed by the two loop splitting
function alone (and thus one simply recovers in this casesthdt of [8]),hs is instead contributed
only by the one and two loop coefficient functions, which represamew result. Similar results
are obtained for the coefficienty (j =i+ 1) of theleadingnext-to-eikonal logarithms at any loop
order, which can all be expressed in term of the one loop casmalous dimensioassuming
the correspondindji (A) vanish forA = 1. In particular, one predictiss = gkioksz + 3Kk3; =
HB2A2 = 88B2C2, which is correct [5, 6], antlss = 2kyokas+ 2karksr = —BBSA2 = — 10832,
which remains to be checked.

Similar results are obtained for the coefficiefis(j = i + 1) of theleadingnext-to-next-to eikonal
logarithms, defined by:

Ki(®)|e = LlPaa() Kji +hji + (1= x) fji + 0 ((1-x))] (2.4)

where thefull one loop prefactopgq(X) should be used in the leading term to define tjyis. The
correspondingfi (A) coefficients inKi(x,A) are given by:

1
fo1(A) = f21+)\§kfo (2.5)
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3 1
f22(A) = fao—A(— Zk10k21 +Kkgoho1) + A 25 K,
2 1 1
f43(A) = f43—A ( — §k10k32 +5 (ho1 — §k21) ko1 + k10h32) + A% gko1

where one notes the presence of contributignadraticin A. Assuming thefji(A)’s vanish for
A =1, the resulting predictions for thg;’s (j =i+ 1) are again found to agree with the exact
results of [6].

3. Fragmentation functions

Similar results hold for physical evolution kernels asatail to fragmentation functions in
semi-inclusivee e~ annihilation (SIA), provided one sels= —1 in the modified evolution equa-
tion:

., 2 1
79X Q) _ [" Pz @) 0) Fon(x/2Q22) @)
nQ x Z
where.Zgia= { %7, %741} denotes a generiton-singletfragmentation function (I use the nota-
tion of [6]). At the leadingeikonal level, threshold resummation [10] can be summériaehe
standard SIA physical evolution kernel by:

S (1-%Q7)

T x +B3"(as(Q%)) 5(1-X) , (3.2)

+

Ksia(x,as(Q?)) ~ [

where the “physical anomalous dimensiof? (Q?) (hence thek;i's) are thesamefor DIS and
SIA, as follows from the results in [11]. Assuming tleadingthreshold logarithmsanishbeyond
the leading eikonal level in thenodifiedSIA evolution kernel forA = —1, and settingA = —1 in
eq.(2.3) and (2.5), one derives predictionsH@¥* and f3' (j = i + 1) which again agree with the
exact results of [6]. In particular, one finds th&t" = —h;;.

4. Subleading next-to-eikonal logarithms

The previous approacatioes nowork for subleadingnext-to-eikonal logarithms, namely the
latter do not vanish in the modified physical evolution késrier A = +1. The following facts are
nevertheless worth quoting:

e At large By, we have a generalization [4] of the leading eikosialgle scaleansatz (which
takes care oéll subleading logarithms) tany eikonal order:

= W) e, +(6(1-xterm (4.1)

+ S0 |irgepy + (1=%) S1W) e, + -

whereW? = (1—-x)Q?, and the #;’s (exceptthe leading eikonal one) are structure function
dependent . A similar result holds fétsa(X, Q?

K(X’ Qz) | largefo -

) | largefo*
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e There are remarkable relations betweenrtftmmentum space next-to-leaditigeshold log-
arithms of the (DIS); and the corresponding (SIA&)r transverse fragmentation function
physical evolution kernels at theext-to-eikonallevel. Namely, using the moment space
results of [6], one can derive the followimgomentum spaaelations:

1) At two loop for thed'(LQ) next-to-eikonal constant term:

hF) — (R Ah 4.2
20 20 Iageﬁo+ 20 (4.2)
Fr Fr
hiT) — pir) et Ahpg
() Fr
with h{ e, =~ 1160Cr, hf )‘Iargeﬁo — 7BoCr, andAhyo = AjA; = 12C2.

2) At three loop for thesingle (L) next-to-eikonal logarithms:

h(Fl) _ h(Fl) Ah 4.
31 SH (4.3)
Fr Fr
hg’l = hg’l ) large o LR
ith h(Fl) ) h(Fl) -2 2 h(Fr)‘ -9 h(Fr) -1 2
wit sl large o BO 20 large o ZCFBO’ 31 large o BO 20 large o LCFBO’
and:
Ahzy = 2A1A; — 20B0CrCa + 20B,C2 . (4.4)

3) At four loop for thedouble&(L2) next-to-eikonal logarithms:

42 42 Iargeﬁo+ 42 (4.5)
Fr Fr
) = hi wgep,~ B2
ith h(Fl) -3 2 h(Fl) —_33C 3 h(Fr) -3 2 h(Fr) —21C 3
w 42 largeBo BO 20 largeBo FBO’ 42 largeo BO 20 large Bo FBO’

and:

Ahyz = —24B,CE + 45B5Cr Ca— 178B5CE — (47— 1002) BoCrCX — (60— 14002) BoCECA— 166oCE .
(4.6)

The largeBy parts are consistent with eq.(4.1), while the remainiafyhy; corrections are
suggestive of an underlying (yet to be discovered) Gribipatov like relation [14].
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e No such relationsexist between the DI&, structure function and the corresponding total
angle-integrated—r | fragmentation function. This fact suggests to focus irktea the
momentum spagghysical evolution kernels of thHengitudinal structure [12, 13] and frag-
mentation functions. Indeed, some observations in [6] dmest that the’(1/(1—x)) part
of the spacelike and timelike longitudinal evolution kdsnmight actually bedentical to
any logarithmic accuracy.

5. Conclusions

e Using a kinematically modified [8] physical evolution eqoat evidence has been given that
the leadingthreshold logarithms ainy eikonal order in thenomentum spadelS and SIA
non-singletphysical evolution kernels can be expressed in term obtigeloopcusp anoma-
lous dimensionA;, which represents thiirst steptowards threshold resummatidaeyond
the leading eikonal level. This result also explains theeolexd universality[5, 6] of the
leadinglogarithmic contributions to the physical kernels of theimas non-singlet structure
functions atanyorder [6] in 1— X.

e The present approadioes notwork for subleadingnext-to-eikonal logarithms. However,
there are hints of the possible existence of an underlyirg ¥ be understood) Gribov-
Lipatov like relation in the special case of theDIS structure function and the corresponding
Fr SIA transverse fragmentation function.
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