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Diffractive excitation is usually described by the Good–Walker formalism for low masses, and

by the triple-Regge formalism for high masses. In the Good–Walker formalism the cross sec-

tion is determined by the fluctuations in the interaction. Bytaking the fluctuations in the BFKL

ladder into account, it is possible to describe both low and high mass excitation in DIS andpp

scattering by the Good–Walker mechanism. In high energypp collisions the fluctuations are

strongly suppressed by saturation. This suppression is strongest for central collisions, which im-

plies that diffractive excitation inpp collisions is largest within a ring with radius about 1 fm.

MC simulations of the Dipole Cascade Model also reproduce the triple-Regge form with a bare

pomeron represented by a simple pole withα(0) = 1.21,α ′ = 0.2 GeV−2, and an almost constant

triple-pomeron coupling.

XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects, DIS 2010
April 19-23, 2010
Firenze, Italy

∗Work done in collaboration with Christoffer Flensburg
†Unfortunately I was not able to come to Florence and present my talk at the conference, due to the ash cloud from

the Icelandic vulcano.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
D
I
S
 
2
0
1
0
)
1
1
1

Fluctuations and Saturation in Diffractive Excitation

1. Introduction

Diffractive excitation represents large fractions of the cross sections inpp collisions or DIS.
In most analyses ofpp collisions low mass excitation is described by the Good–Walker formalism
[1], while high mass excitation is described by a triple-Regge formula [2, 3]. In the Good–Walker
formalism the state of the incoming projectile is written asa superposition of eigenstates to theT -
matrix, and the cross section for diffractive excitation isgiven by the fluctuations in the eigenvalues.
In the triple-Regge formulation it is instead determined bythe reggeon couplings to the projectile
and the target, and a set of triple-reggeon couplings, determined by fits to data (for recent analyses
see e.g. refs. [4, 5]). The fluctuations in the pomeron ladderare here not included in the Good–
Walker formalism, which therefore limits its application to low masses.

It is, however, well known that the fluctuations in the evolution of a BFKL pomeron are very
large [6]. In this talk I will discuss how an analysis of thesefluctuations is able to reproduce the
triple-regge formulae, with the free parameters determined by fits to the total and elastic cross
sections. The fluctuations in the bare pomeron are large bothin DIS and in pp collisions, but
reduced in the latter by saturation effects. The bare triple-pomeron coupling is also determined. A
more extensive presentation of the results is given in ref. [7].

2. The eikonal approximation and the Good–Walker formalism

Diffraction, saturation, and multiple interactions are most easily described in impact parameter
space. Multiple interactions, which are represented by a convolution in transverse momentum
space, correspond to a simple multiplication in transversecoordinate space. If the scattering is
driven by absorption into inelastic statesi, with weights 2fi, the elastic amplitude is given by

T = 1− e−F , with F = ∑ fi. (2.1)

For a structureless projectile we find:

dσtot/d2b ∼ 〈2T 〉, σel/d2b ∼ 〈T 〉2, σinel/d2b ∼ 〈1− e−∑2 fi〉 = σtot −σel. (2.2)

If the projectile has an internal structure, the mass eigenstatesΨk can differ from the eigen-
states of diffractionΦn, which have eigenvaluesTn. With the notationΨk = ∑n cknΦn (with Ψin =

Ψ1) the elastic amplitude given by〈Ψ1|T |Ψ1〉= ∑c2
1nTn = 〈T 〉, while the amplitude for diffractive

transition to mass eigenstateΨk is given by〈Ψk|T |Ψ1〉 = ∑n cknTnc1n. The corresponding cross
sections become

dσel/d2b ∼ (∑c2
1nTn)

2 = 〈T 〉2 (2.3)

dσdi f f /d2b = ∑
k

〈Ψ1|T |Ψk〉〈Ψk|T |Ψ1〉 = 〈T 2〉. (2.4)

The diffractive cross section here includes elastic scattering. Subtracting this gives the cross section
for diffractive excitation, which is determined by the fluctuations in the scattering process:

dσdi f f ex/d2b = dσdi f f −dσel = 〈T 2〉− 〈T〉2. (2.5)

As suggested by Miettinen and Pumplin [8], we will here assume that the diffractive eigen-
states correspond to parton cascades, which can come on shell through interaction with the target.
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3. Dipole cascade models

Mueller’s dipole cascade model [9, 10, 11] is a formulation of BFKL evolution in transverse
coordinate space. Gluon radiation from the colour charge ina parent quark or gluon is screened
by the accompanying anticharge in the colour dipole. This suppresses emissions at large transverse
separation, which corresponds to the suppression of smallk⊥ in BFKL. For a dipole(x,y) the
probability per unit rapidity (Y ) for emission of a gluon at transverse positionz is given by

dP

dY
=

ᾱ
2π

d2z
(x−y)2

(x−z)2(z−y)2 , with ᾱ =
3αs

π
. (3.1)

The dipole is split into two dipoles, which (in the largeNc limit) emit new gluons independently.
The result is a cascade, where the number of dipoles grows exponentially withY .

When two cascades collide, a pair of dipoles with coordinates (xi,yi) and(x j,y j) can interact
via gluon exchange with the probability 2fi j, where

fi j = f (xi,yi|x j,y j) =
α2

s

8

[

log

(

(xi −y j)
2(yi −x j)

2

(xi −x j)2(yi −y j)2

)]2

. (3.2)

Summing over all dipoles in the cascades then reproduces theLL BFKL result.
TheLund cascade model [12, 13, 14] is a generalisation of Mueller’s model, which includes:
– NLL BFKL effects
– Nonlinear effects in the evolution
– Confinement effects
For an incoming virtual photon splitting in aqq̄ pair, the initial state wavefunction is deter-

mined by perturbative QCD. For an incoming proton we make an ansatz in form of an equilateral
triangle of dipoles. After evolution the result is rather insensitive to the exact form of the initial
state. The model is also implemented in a MC program DIPSY.

The model reproduces successfully the total and
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Figure 1: Distribution in the one-pomeron am-
plitude F in DIS for Q2 = 14 GeV2 andW =

220 GeV. The photon is here represented by
a dipole with sizer = 1/Q, b is measured in
GeV−2.

(quasi)elastic cross sections for DIS andpp scat-
tering. The fluctuations in the evolution are large,
and the model can also describe diffractive excita-
tion within the Good–Walker formalism, without new
parameters beyond those adjusted to the total and
elastic cross sections [15]. Here I will discuss the
fluctuations, and the effects of saturation, which are
very important inpp scattering but less essential in
DIS.

4. Nature of the fluctuations

γ∗p collisions
The distribution in the non-saturated scattering

amplitude,F, is shown in fig. 1 for different impact parameters. The distribution can be approxi-
mately described by a powerdP

dF ≈ AF−p (with a cutoff for smallF-values), which is illustrated by
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Figure 2: Distribution in the one-pomeron amplitude (F , left) and the uniterized amplitude (T , right) in pp
collisions at 2 TeV. Notation as in fig. 1.
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Figure 3: Left: Impact parameter distributions for〈T 〉 = (dσtot/d2b)/2, 〈T 〉2 = dσel/d2b, andVT =

dσdiffex/d2b in pp collisions atW = 2 TeV. b is in units of GeV−1. Right: The total, elastic and single
diffractive cross sections in the one-pomeron approximation. The crosses are model calculations and the
lines are from a tuned triple-regge parametrisation.

the straight lines in the figure. The width of this distribution is rather large, and the approximation
gives the ratiodσdi f f .ex./dσtot ≈ 1−1/22−p. The powerp is independent of the impact parameter,
and therefore this result is also valid for the integrated cross sections. This givesσdi f f /σtot ∼ 0.13
at Q2 = 50GeV2, decreasing for largerQ2, but fairly insensitive to the energyW .

pp collisions

In pp scattering the Born amplitude is large, and therefore unitarity effects are important.
Fig. 2 shows both the Born amplitude and the unitarized amplitude at 2 TeV for differentb-values.
We see that the width of the Born amplitude is large, and without unitarization the fraction of
diffractive excitation would be similar to that forγ∗p for lower Q2-values. (The smooth lines are
fits of the formAF pe−aF .)

However, the unitarized amplitude is limited by 1, and the width, and therefore the diffractive
excitation, is very much reduced. This is in particular the case for central collisions, where the am-
plitude approaches the black disc limit. This result corresponds to the effect of enhanced diagrams
in the conventional triple-regge approach. As a result factorization is not satisfied when comparing
diffractive excitation in DIS andpp scattering. The impact parameter profile is shown in fig. 3. We
see that the cross section for diffractive excitation is largest in a ring with radiusb ∼ 1fm.
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5. Relation Good–Walker — Triple-Regge

Fig. 3 shows also the bare pomeron results for the total, elastic and single diffractive cross
sections, without unitarization corrections. We note thatthese results are very well reproduced by
a triple-regge expression with a single pomeron pole, with parameters

α(0) = 1.21, α ′ = 0.2GeV−2, gpP(t) = (5.6GeV−1)e1.9t , g3P(t) = 0.31GeV−1, (5.1)

which is shown by the straight lines. We see that without unitarizationσel would be larger thanσtot

for W > 1.8 TeV.

6. Summary

• In the eikonal approximation diffractive excitation is directly determined by the fluctuations
in the scattering process.

• The Lund Dipole Cascade Model can describepp andγ∗p total, elastic, and diffractive exci-
tation to small and large masses.

• The fluctuations in the cascade evolutions are large.

• Therefore diffractive excitation is large inγ∗p collisions.

• In pp collisions the fluctuations are large for the Born amplitude, but strongly suppressed by
unitarity above∼ 20 GeV.

• Diffractive excitation inpp is a slowly expanding ring inb-space with radius∼ 1 fm.

• Neglecting saturation, the dipole model reproduces the triple-Regge result for abare pomeron,
which is a simple pole withα(0) = 1.21 andα ′ = 0.2GeV−2.
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