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1. Introduction

Multiplicity distributions of charged hadrons in the curmteegion in the Breit frame are pre-
sented as functions of the virtuality of the exchanged bo&3mper unit of the scaled momentum,
Xp = 2Pareit/Q, and the variable Ifi/x,) in bins of Q2. Here,Pg it denotes the momentum of a
hadron in the Breit frame.

The data sample collected with the ZEUS detector betwee6-23®7, comprising @4fo 1,
enables the study to be extendedQ@® as high as 41000 GéV This analysis was restricted to
events withQ? > 160Ge\?. A well reconstructed neutral current DIS sample was setbbly
standard cleaning cuts.

Predictions from next-to-leading-order (NLO) QCD caldigdas that combine full NLO ma-
trix elements with fragmentation functions (FF) obtainashf fits toe e~ annihilation data [6, 7,
8,9, 10, 11] were compared to the measurements. Predi¢tamsMLLA+LPHD [5, 12, 13] were
also considered.

The predictions from several Monte Carlo (MC) models wenmmgared to the data. Neutral
current DIS events were generated using the leading-or@& ARIADNE 4.12 program [19]. The
QCD cascade was simulated using the colour-dipole modeMX20] inside ARIADNE. Ad-
ditional samples were generated with the MEPS modele#10 6.5 [21]. Both MC programs,
ARIADNE and LEPTOQ, were also used to calculate detector acceptances andréxictire data to
the hadron level.

In addition, the measurements are compared to prewepugsults [1, 2, 3, 4] and tee~
annihilation data [14, 15, 16, 17]. The hadronisation indheent region in the Breit frame iep
scattering can be compared directly to the hadronisatianahemisphere ad"e~ annihilation
events. There, particle momenta are scaled to half of thieezefimass energf* = /s/2.

2. Scaled momentum spectra

Scaled momentum spectra were measured in the current liegtom Breit frame as a function
of Q? in the kinematic range 168 Q? < 40960GeV and 0002 < x < 0.75. The normalised
spectrum, IN dn*/dIn(1/x,), with N being the number of events and being the number of
charged particles, is shown in Figs. 1-2. These scaled niomespectra exhibit a hump-backed
form with an approximately Gaussian shape around the pdakniean charged multiplicities are
given by the integrals of the spectra. 83 increases, the multiplicity increases and, in addition,
the peak of the spectrum moves to larger values (@f/ixy).

In Fig. 1, the predictions of RAIADNE and LEPTO are compared to the data. They reproduce
the main features of the data but do not agree in detail. Fohitihes? bin, both models predict
too many charged particles at medium and low values (df/l,). LEPTO also predicts too many
particles for mediun®? bins while ARIADNE predicts too few for low@? bins.

In Fig. 2, the MLLA+LPHD predictions[5, 12] are compared bketdata. Too many particles
are predicted for the highest- and low€¥t-bins, while at mediun®? the data is reasonably well
described.
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Fig.1 The scaled momentum spectra, Fig.2 The
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Fig.3 The number of charged particles per
event per unit okp, 1/N n*/Axp, as a func-
tion of Q% in x, bins of widthAxp. Other
details as in Fig. 1.
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Fig.4 The number of charged particles per event
per unit of xp, 1/N ni/Axp, as a function of
Q? in Xp bins with width Ax, as in Fig. 3.
The shaded band represents the NLO calcula-
tion by Kretzer [6] with its renormalisation scale
uncertainty. Additional NLO calculations are
shown: Kniehl, Kramer, Pétter [7](KKP), Al-
bino, Kniehl, Kramer [8](AKK) and De Florian,
Sassot and Stratmann [10, 11](DSS).
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Fig.5 The number of charged particles%é?ee\\/gnt per

unit of xp, 1/N n* /Axp, as a function of in X, bins Fig.6 The number of charged particles per
with width Axp. Also shown are data from H1 [4]and ~ €Vent per unit okp, 1/N ni/Apr as a func-
ete [14, 15, 17, 16]. The dots (triangles) represent tion of Q%in Xp bins with widthAxp. Other
the new (previous) ZEUS measurement, the squares details as in Fig. 5.

the H1 data and the inverted triangles &iee~ data.

The three lowestp bins are scaled by factors of 30, 5

and 2, respectively.

3. Scaling violation

As the energy scal€), increases, the phase space for soft gluon radiation iseseéeading to
a rise of the number of soft particles with small These scaling violations can be seen when the
data are plotted in bins &f, as a function of)?. Figure 3 show that the number of charged particles
increases withQ? at low x, and decreases witQ? at highx,. Neither LEPTO nor ARIADNE
provides a good description of th@@® dependence over the whole rangexef Figure 4 shows
the data together with four NLO+FF QCD predictions [6, 7, 8,10, 11] forx, > 0.1, where
theoretical uncertainties are small and the predictiornstom strongly affected by hadron-mass
effects which are not included in the calculations [18]. Tlagmentation functions (FF) used in
all four calculations were extracted froee~ data. The four predictions are similar in shape and
have similar uncertainties. The uncertainties are onhgiiiated for the calculation of Kretzer [6].
The NLO calculations also do not provide a good descriptibthe data. Too many particles are
predicted at smalk, and too few at large,. In general, the scaling violations predicted are not
strong enough.

Figure 5 shows the same data as Fig. 3 together with resolts F1 [4] and frome*e™
experiments [14, 15, 16, 17]. For a proper comparison, taeérticle momenta frore"e~ data
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were scaled to half of the centre-of-mass energy as distuasthe introduction and the scale
was set tdQ = 2 Epeam WhereEpeamis the beam energy. In addition, corrections for the diffiere
treatment oK® andA decays were applied. The overall agreement between treetiffdata sets
supports fragmentation universality. The presentatiothefdata using a linear scale as presented
in Fig. 6 does, however, show some significant differencewdene’ e andep, in particular
around thez® mass at M2 < x, < 0.2 and at lowQ? at 0.1 < x, < 0.2.

4. Conclusions

Scaled momentum spectra have been measured in NC DIS fouttentregion in the Breit
frame over the large range Qf from 10 Ge\? to 40960 GeVY. Large scaling violations are ob-
served. Comparing the datag¢be results generally supports the concept of quark-fragntienta
universality. Neither MLLA+LPHD nor NLO+FF calculationsescribe the data well. A better,
albeit not prefect description is provided by th@ ADNE program.
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