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1. Introduction

Inclusive deep-inelastic lepton-nucleon scattering {D4i& the exchange of a colour-neutral
(gauge) boson is a benchmark process of perturbative QCGedrding contributions suppressed
by powers of ¥Q?, the structure functions in electromagnetic DIS are given b

X TR (x,Q%) = [Cai(as(Q)) ® Q%) (%) (1.1)

in terms of the coefficient functiorG,;, a= 2, L, i = q,g, and the nucleon parton distributiofj
Here® denotes the standard Mellin convolution, and the summaitini is understood. Without
loss of information, we identify the renormalization andttaization scale with the physical scale
Q?in Eq. (1.1) and throughout this article.

The scale dependence of the parton densities is

aER) _ |

din Q2 P(as(Q?)) @ f(Q*)] (&) (1.2)

The coefficient functions in Eq. (1.1) and the splitting ftions Pk can be expanded in powers of
the strong coupling constaaf = as/(4m),

Cai(X,0s) = ¥ _patlacy)(x), (1.3)
Pe(x,0s) = 3_oa Py (x) (1.4)

with |; = 0 for F, (and the Higgs-exchange structure functigndiscussed below), and = 1
for the longitudinal structure functioR_. In this notation, the RLO approximation includes the
contributions with < nin both Egs. (1.3) and (1.4).

The above (spin-averaged) splitting functions are prégsdmiown ton = 2 [1, 2], i.e., the
next-to-next-to-leading order (NNL& N2LO). The coefficient functions for the most important
structure functions (includings for charge-averaged/-exchange) have also been fully computed
to orderag [3-5], while the less important charge-asymmatfycases are available only through
a couple of low-integer MellirN moments [6, 7]. The frontier in the present massless cagare
the ag corrections, for which first results have been obtained @ldtvest value oN [8,9]. See
Ref. [10] for the status of the third-order computation @& treavy-quark contributions to DIS.

2. The general large-x behaviour

We are interested in the leading contributions, in termsafgrs in(1—x), to Egs. (1.3)
and (1.4). The form of the diagonal splitting functions igtdé under higher-order corrections in
the MS scheme, [11]

P! = AV(1—xt+BY5(1-x) + ... . (2.1)

]
The off-diagonal quantities, however, receive a doubigtithmic higher-order enhancement,

piggj =32, .(j'?alnz"a(l—x) o, (2.2)

whereAi(j'?a 0 (Ca—Cr)'2for a< | for (at least) < 2[2], i.e., all double logarithms vanish for
Cr = Ca, Which is part of the colour-factor choice leading to.an=1 supersymmetric theory.
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The leading largecparts of ‘diagonal’ coefficient functions, e.€; q andC, g, are given by

21-1 2l-1-a -1
['n (1 X)} +o. 2.3)

Cd|ag = Z D

These terms are resummed by the soft-gluon exponentia®lp]. For DIS structure functions
(and some other semi-leptonic processes) this resummiatkmown at the next-to-next-to-next-
to-leading logarithmic accuracy, i.e., the highest sixslage completely known to all orders [16].

No resummation has been derived so far for the off-diagdtalqur-singlet) coefficient func-
tions such a€, g andC, 4 which are of the form

+

g = 3230 In? 131 x) + ... (2.4)
The coefficient functions fof_ are suppressed by one power(in-x) with respect to those d#,

cf'} =52, LE'}(l-x)“g IN?-23(1-x) + ..., (2.5)

recall our notation with, = 1 in Eq. (1.3). The double-log contributions@ ¢ (and theCr = 0
part ofC_ g) have been resummed in Ref. [17], i.e., the respective btgheee logarithmsa(= 0, 1
and 2 in Eq. (2.5)) are known to all orders.

Our aim is to derive corresponding predictions for all gitee® in Egs. (2.2), (2.4) and (2.5).
This contribution is a brief status report of this programmukich has not been finished so far.

3. Physical evolution kernel for (F, Fy)

The results of Ref. [17] and their extension to the non-le@diorrections foC, 4 and other
quantities at all orders i(1—x) [18], see Ref. [19] for a brief summary, have been obtained by
studying the non-singlet physical evolution kernels f@& tbspective observables. It is thus natural
to study also flavour-singlet physical kernels.

The most natural complement to the standard quaRtityith C(z?i) = 84 6(1—Xx) is a structure
function for a probe which directly interacts only with ghsy such as a scalgrwith a GV G,
coupling to the gluon field [20]. In the Standard Model thitenaction is realized for the Higgs
boson in the limit of a heavy top-quark [21,22]. The coeffitiinctionsC,; have been determined
recently in Refs. [23] and [24] to the second and third orderd, respectively.

We thus consider the 2-vector singlet structure functiah2x?2 coefficient-function matrix

F = <F2> , C = <C2~q C2’9> . (3.1)
Fo Copa Cog
With P denoting the matrix of the splitting functions (2.3) and¥j2the evolution kernel foF reads
dF dC
= f + CPf 3.2
dnQZ ~ ding? ' T (3.2)
dC . K2z Koo

B(as) = —BoaZ+... with By = 11Ca/3— 2n; /3 is the standard beta function of QCD. All products
of x-dependent quantities have to be read as convolutions ¢dupts of their Mellin transforms).



Higher-order flavour-singlet splitting and coefficient fitions at large x G. Soar

After expanding iros, the first term in the second line of Eq. (3.2) receives doldgarithmic
contributions from the non-singlet and singlet coefficimictions (2.3) and (2.4). The second
term, absent in the non-singlet cases of Refs. [17, 18]uded also the double-log terms of
Eq. (2.2).

The crucial observation, proven by available three-lodputations to ordewr? for the non-
singlet parts (thanks to Eq. (2.1)) and to orderfor the singlet contribution, is that the physical
kernelK is only single-log enhanced [24], i.e.,

Kb = $h_oAlnn (1-%) %1 (1-x) + ... (3.3)

where the expansion coefficierl(é'g are defined as in Eqg. (1.4) for the splitting functions above.

We conjecture that also the flavour singlet part remaindesitogy enhanced at the fourth order.
This implies a cancellation between the double-logarithotntributions to the, so far unknown,
off-diagonall = 3 splitting functions (2.2) and the known [4, 24] coefficiémuctions to ordeag
from which the former can be deduced. The results are

Pq(?/nf = In6(1—x) -0 + |n5(1—X)[§§CAF ;3CAFCF + 247CAan}
;ICAFCan 84chan] + 0 (In¥(1-x)) , (3.4)
Psy/Cr = In®(1—x) -0 + |n5(1—x)[;gcAF 27CA,:CF 27CAan}
+ In*(1-x) [ (%) Egz) ci— 22576CAF n + (%7—8(2) C2Cr — g_iCAFClg
;ICAFCF”f + giCAanz] + 0 (In¥(1-x)) (3.5)

with C,- = Ca—Ck. The vanishing of the leading9ii1—x) contributions is due to a cancellation of
contributions. This cancellation turns out to be strudtteature [25], i.e., the leading coefficients
vanish at all even orders ms. Egs. (3.4) and (3.5) show the colour-factor pattern alreeded for

| <2 below Eq. (2.2). The feature is not an obvious consequehoaralerivation and can thus
be viewed as a non-trivial check of the above conjecture. edtension of the above results to all
powers of(1—x) can be found in Ref. [24].

4. Physical evolution kernel for (F,F.)

The system of standard DIS structure functions

F = (Eﬁ) . R =R/(aq9) (4.)

studied before in Refs. [26, 27], can be analyzed in complegtogy to the previous section. Our
normalization off_ (of course Eq. (4.1) involves a simple division only in Mei space) leads to

(ORR0)
0(1-x) O > | [ C2q C2g

C = ~ + ! ! . (42)
(5(1—x) ¢© 2.5 &'y el

L.g
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The resulting elements physical evolution kernel are agaigle-log enhanced at largeand read

Ky, K
K = <K22 K2L> ;o KY = Z Algy (1-%) 0! =1(1-x) + (4.3)
L2 "ML

at, at least| < 3 for the upper row, witbﬂ\él_).o =0, and al < 2 for the lower row.

Conjecturing that this behaviour holdslat 3 also forK_, andK,, the three-loop results of
Refs. [1-4] together with Eq (3.4) yield

80 728
¢ JCr = In®(1— x) 10 cF + In5(1— x)[(72—6452)c§+3c§nf—(——3252)CFCA}
+ In*(1-x) - [known coefficient$ + & (In(1-x)) , (4.4)
clfgg, /e = (1-x)In(1—x) %Zc,f + (1—x)|n5(1—x)[— @)CA 694CA N + 1§4C Cr
40 70760 25306 320
+—c§} + (1—x)|n4(1—x)[(7—352{2)CA (7 52>
4192 1600 56 320
- 27 G+ (o +3zzz)cAc§+—cAcF f+(38——zz)cé
+ CA +%3cpnf} + 0((1-x)In¥(1-x)) , (4.5)

where the coefficient of fi{1—x) in Eq. (4.4) has been suppressed for brevity. The complete fo
of this equation has been given in Ref. [17], where it wasveerin another manner which did not
involve the off-diagonal splitting functions. Consequerihe consistency of the two derivations
provides another confirmation of the correctness of the elbesult foqu(g). The nonEr parts of
Eq. (4.5) — here, as App. C of Ref. [24], given idk-exchange, i.e., without th[c',llg1 contribution

for the photon case [4] — have also been derived, but notattyphvritten down, in Ref. [17].

5. Summary and Outlook

We have summarized the status of our laxgeredictions of higher-order off-diagonal splitting
functions and DIS coefficient functions. The coefficientstaf highest three powers of (h—x)
have been derived for the four-loop contributions to thettspy functionsPyg and Pyq from the
three-loop coefficient functions and the single-logarithenhancement of the physical evolution
kernel for the systenF, Fy) of flavour-singlet structure functions at ordef [24]. In the present
contribution we have employed these results to derive &sddading three largedogarithms
for the fourth-order gluon coefficient functid@® g for the longitudinal structure function from the
analogous kernel foilrg, F.).

These results will become phenomenologically relevard, effectivex-space parametriza-
tions analogous to, e.g., those of Ref. [28], once the nexbmsdep towards a full fourth-order
calculation of deep-inelastic scattering, the extensioRed. [29] to orderad, has been taken.

The determination of flavour-singlet quantities from theggibal kernels is neither rigorous,
nor — unlike in flavour non-singlet cases [17, 18] — can it biereded to all orders ias. First all-
order leading-logarithmic results have been presentecein[R5] of a rigorous and powerful ap-
proach, the prediction of the coefficients of the highestail®logarithms from th&®-dimensional
structure of the unfactorized structure functions togetVith mass-factorization to all orders.
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