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1. Introduction

Inclusive deep-inelastic lepton-nucleon scattering (DIS) via the exchange of a colour-neutral
(gauge) boson is a benchmark process of perturbative QCD. Disregarding contributions suppressed
by powers of 1/Q2, the structure functions in electromagnetic DIS are given by

x−1Fn
a (x,Q2) =

[
Ca,i(αs(Q

2))⊗ f n
i (Q2)

]
(x) (1.1)

in terms of the coefficient functionsCa,i , a = 2, L, i = q,g, and the nucleon parton distributionsf n
i .

Here⊗ denotes the standard Mellin convolution, and the summationover i is understood. Without
loss of information, we identify the renormalization and factorization scale with the physical scale
Q2 in Eq. (1.1) and throughout this article.

The scale dependence of the parton densities is

d fi(ξ ,µ2)

d lnQ2 =
[
Pik(αs(Q

2))⊗ fk(Q
2)
]
(ξ ) . (1.2)

The coefficient functions in Eq. (1.1) and the splitting functionsPik can be expanded in powers of
the strong coupling constantas ≡ αs/(4π),

Ca,i(x,αs) = ∑ l=0 al+la
s

c(l)
a,i (x) , (1.3)

Pik(x,αs) = ∑ l=0 al+1
s

P(l)
ik (x) (1.4)

with la = 0 for F2 (and the Higgs-exchange structure functionFφ discussed below), andla = 1
for the longitudinal structure functionFL. In this notation, the NnLO approximation includes the
contributions withl ≤ n in both Eqs. (1.3) and (1.4).

The above (spin-averaged) splitting functions are presently known to n = 2 [1, 2], i.e., the
next-to-next-to-leading order (NNLO≡ N2LO). The coefficient functions for the most important
structure functions (includingF3 for charge-averagedW-exchange) have also been fully computed
to orderα3

s [3–5], while the less important charge-asymmetryW-cases are available only through
a couple of low-integer Mellin-N moments [6,7]. The frontier in the present massless case arenow
the α4

s corrections, for which first results have been obtained at the lowest value ofN [8, 9]. See
Ref. [10] for the status of the third-order computation of the heavy-quark contributions to DIS.

2. The general large-x behaviour

We are interested in the leading contributions, in terms of powers in(1−x), to Eqs. (1.3)
and (1.4). The form of the diagonal splitting functions is stable under higher-order corrections in
theMS scheme, [11]

P(l)
ii = A(l)

i (1−x)−1
+ +B(l)

i δ (1−x) + . . . . (2.1)

The off-diagonal quantities, however, receive a double-logarithmic higher-order enhancement,

P(l)
i 6= j = ∑2l

a=0 A(l)
i j ,a ln2l−a(1−x) + . . . , (2.2)

whereA(l)
i j ,a ∝ (CA−CF) l−a for a < l for (at least)l ≤ 2 [2], i.e., all double logarithms vanish for

CF = CA, which is part of the colour-factor choice leading to anN =1 supersymmetric theory.
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The leading large-x parts of ‘diagonal’ coefficient functions, e.g.,C2,q andCφ ,g, are given by

c(l)
diag =

2l−1

∑
a=0

D(l)
i,a

[
ln2l−1−a(1−x)

1−x

]−1

+

+ . . . . (2.3)

These terms are resummed by the soft-gluon exponentiation [12–15]. For DIS structure functions
(and some other semi-leptonic processes) this resummationis known at the next-to-next-to-next-
to-leading logarithmic accuracy, i.e., the highest six logs are completely known to all orders [16].

No resummation has been derived so far for the off-diagonal (flavour-singlet) coefficient func-
tions such asC2,g andCφ ,q which are of the form

c(l)
off−d = ∑2l−1

a=0 O(l)
i,a ln2l−1−a(1−x) + . . . . (2.4)

The coefficient functions forFL are suppressed by one power in(1−x) with respect to those ofF2,

c(l)
L,i = ∑2l

a=0 L (l)
L,i (1−x)δig ln2l−a(1−x) + . . . , (2.5)

recall our notation withlL = 1 in Eq. (1.3). The double-log contributions toCL,q (and theCF = 0
part ofCL,g) have been resummed in Ref. [17], i.e., the respective highest three logarithms (a= 0, 1
and 2 in Eq. (2.5)) are known to all orders.

Our aim is to derive corresponding predictions for all quantities in Eqs. (2.2), (2.4) and (2.5).
This contribution is a brief status report of this programme, which has not been finished so far.

3. Physical evolution kernel for (F2,Fφ )

The results of Ref. [17] and their extension to the non-leading corrections forC2,q and other
quantities at all orders in(1−x) [18], see Ref. [19] for a brief summary, have been obtained by
studying the non-singlet physical evolution kernels for the respective observables. It is thus natural
to study also flavour-singlet physical kernels.

The most natural complement to the standard quantityF2 with c(0)
2,i = δiq δ (1−x) is a structure

function for a probe which directly interacts only with gluons, such as a scalarφ with a φ GµνGµν

coupling to the gluon field [20]. In the Standard Model this interaction is realized for the Higgs
boson in the limit of a heavy top-quark [21,22]. The coefficient functionsCφ ,i have been determined
recently in Refs. [23] and [24] to the second and third order in αs, respectively.

We thus consider the 2-vector singlet structure function and 2×2 coefficient-function matrix

F =

(
F2

Fφ

)
, C =

(
C2,q C2,g

Cφ ,q Cφ ,g

)
. (3.1)

With P denoting the matrix of the splitting functions (2.3) and (2.4), the evolution kernel forF reads

dF
d lnQ2 =

dC
d lnQ2 f + CP f (3.2)

=
(

β (as)
dC
das

C−1+CPC−1
)

F = KF with K =

(
K22 K2φ

Kφ2 Kφφ

)
.

β (as) =−β0a2
s
+ . . . with β0 = 11CA/3−2nf /3 is the standard beta function of QCD. All products

of x-dependent quantities have to be read as convolutions (or products of their Mellin transforms).
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After expanding inαs, the first term in the second line of Eq. (3.2) receives double-logarithmic
contributions from the non-singlet and singlet coefficientfunctions (2.3) and (2.4). The second
term, absent in the non-singlet cases of Refs. [17, 18], includes also the double-log terms of
Eq. (2.2).

The crucial observation, proven by available three-loop calculations to orderα4
s for the non-

singlet parts (thanks to Eq. (2.1)) and to orderα3
s for the singlet contribution, is that the physical

kernelK is only single-log enhanced [24], i.e.,

K(l)
ab = ∑l

η=0 A(l)
ab,η(1−x)−δab lnl−η (1−x) + . . . (3.3)

where the expansion coefficientsK(l)
ab are defined as in Eq. (1.4) for the splitting functions above.

We conjecture that also the flavour singlet part remains single-log enhanced at the fourth order.
This implies a cancellation between the double-logarithmic contributions to the, so far unknown,
off-diagonall = 3 splitting functions (2.2) and the known [4, 24] coefficientfunctions to orderα3

s

from which the former can be deduced. The results are

P(3)
qg /nf = ln6(1−x) ·0 + ln5(1−x)

[ 22
27

C3
AF −

14
27

C2
AFCF +

4
27

C2
AFnf

]

+ ln4(1−x)
[(293

27
−

80
9

ζ2

)
C3

AF −
116
81

C2
AFnf +

(4477
16

−8ζ2

)
C2

AFCF −
13
81

CAFC2
F

+
17
81

CAFCFnf −
4
81

CAFn2
f

]
+ O

(
ln3(1−x)

)
, (3.4)

P(3)
gq /CF = ln6(1−x) ·0 + ln5(1−x)

[ 70
27

C3
AF −

14
27

C2
AFCF −

4
27

C2
AFnf

]

+ ln4(1−x)
[(3280

81
+

16
9

ζ2

)
C3

AF −
256
27

C2
AFnf +

(637
18

−8ζ2

)
C2

AFCF −
49
81

CAFC2
F

+
17
81

CAFCFnf +
32
81

CAFn2
f

]
+ O

(
ln3(1−x)

)
(3.5)

with CAF ≡CA−CF . The vanishing of the leading ln6(1−x) contributions is due to a cancellation of
contributions. This cancellation turns out to be structural feature [25], i.e., the leading coefficients
vanish at all even orders inαs. Eqs. (3.4) and (3.5) show the colour-factor pattern already noted for
l ≤ 2 below Eq. (2.2). The feature is not an obvious consequence of our derivation and can thus
be viewed as a non-trivial check of the above conjecture. Theextension of the above results to all
powers of(1−x) can be found in Ref. [24].

4. Physical evolution kernel for (F2,FL)

The system of standard DIS structure functions

F =
( F2

F̂L

)
, F̂L = FL/

(
as c(0)

L,q

)
, (4.1)

studied before in Refs. [26, 27], can be analyzed in completeanalogy to the previous section. Our
normalization ofF̂L (of course Eq. (4.1) involves a simple division only in Mellin-N space) leads to

C =

(
δ (1−x) 0

δ (1−x) ĉ(0)
L,g

)
+ ∑

l=1

al
s

(
c(l)

2,q c(l)
2,g

ĉ(l)
L,q ĉ(l)

L,g

)

. (4.2)
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The resulting elements physical evolution kernel are againsingle-log enhanced at largex and read

K =

(
K22 K2L

KL2 KLL

)
, K(l)

ab =
l

∑
η=0

Â(l)
ab,η(1−x)−1 lnl−η(1−x) + . . . (4.3)

at, at least,l ≤ 3 for the upper row, witĥA(l)
2L,0 = 0, and atl ≤ 2 for the lower row.

Conjecturing that this behaviour holds atl = 3 also forKL2 andKLL, the three-loop results of
Refs. [1–4] together with Eq. (3.4) yield

c(3)
L,q /CF = ln6(1−x)

16
3

C3
F + ln5(1−x)

[
(72−64ζ2)C3

F +
80
9

C2
Fnf −

( 728
9

−32ζ2

)
C2

FCA

]

+ ln4(1−x) ·
[
known coefficients

]
+ O

(
ln3(1−x)

)
, (4.4)

c(3)
L,g /nf = (1−x) ln6(1−x)

32
3

C3
A + (1−x) ln5(1−x)

[
−

2080
9

C3
A +

64
9

C2
A nf +

104
3

C2
ACF

+
40
3

C3
F

]
+ (1−x) ln4(1−x)

[( 70760
27

−352ζ2

)
C3

A −
(25306

27
−

320
3

ζ2

)
C2

ACF

−
4192
27

C2
A nf +

(1600
27

+32ζ2

)
CAC2

F +
556
27

CACFnf +
(

38−
320
3

ζ2

)
C3

F

+
32
27

CAn2
f +

308
27

C2
Fnf

]
+ O

(
(1−x) ln3(1−x)

)
, (4.5)

where the coefficient of ln4(1−x) in Eq. (4.4) has been suppressed for brevity. The complete form
of this equation has been given in Ref. [17], where it was derived in another manner which did not
involve the off-diagonal splitting functions. Consequently the consistency of the two derivations
provides another confirmation of the correctness of the above result forP(3)

qg . The non-CF parts of
Eq. (4.5) – here, as App. C of Ref. [24], given forW-exchange, i.e., without thef l g

11 contribution
for the photon case [4] – have also been derived, but not explicitly written down, in Ref. [17].

5. Summary and Outlook

We have summarized the status of our large-x predictions of higher-order off-diagonal splitting
functions and DIS coefficient functions. The coefficients ofthe highest three powers of ln(1−x)
have been derived for the four-loop contributions to the splitting functionsPqg andPgq from the
three-loop coefficient functions and the single-logarithmic enhancement of the physical evolution
kernel for the system (F2, Fφ ) of flavour-singlet structure functions at orderα4

s [24]. In the present
contribution we have employed these results to derive also the leading three large-x logarithms
for the fourth-order gluon coefficient functionCL,g for the longitudinal structure function from the
analogous kernel for (F2, FL).

These results will become phenomenologically relevant, via effectivex-space parametriza-
tions analogous to, e.g., those of Ref. [28], once the next major step towards a full fourth-order
calculation of deep-inelastic scattering, the extension of Ref. [29] to orderα4

s , has been taken.
The determination of flavour-singlet quantities from the physical kernels is neither rigorous,

nor – unlike in flavour non-singlet cases [17, 18] – can it be extended to all orders inαs. First all-
order leading-logarithmic results have been presented in Ref. [25] of a rigorous and powerful ap-
proach, the prediction of the coefficients of the highest double logarithms from theD-dimensional
structure of the unfactorized structure functions together with mass-factorization to all orders.
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