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We review some of the features of the evolutions equations for transverse momentum dependent

parton distributions recently proposed by us. We briefly describe the new ingredients entering

the equations and their relationship with ordinary evolution equations. We comment on possible

choices for the initial conditions and then show results forthe evolved distributions obtained by

numerical implementation of the equations. By computing the average transverse momentum at

different scale we highlight some general properties of thesolutions.
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1. Introduction

Transverse momentum dependent, or equivalently,kt-distributions are currently object of in-
tense research activity due to their wide range of applicability in the description of hadron initiated
hard processes [1, 2]. The use ofkt-distributions is indeed phenomenologically appealing since
observables constructed upon them show a reasonable agreement with data already in lowest or-
der, which is not the case for predictions based on collinear factorizationat the same accuracy, see
for instance the discussion in Ref. [3]. Their correct formalization in quantum-chromodynamics
appears to be well established only at high energy [4]. Away from this limit the situation is still
unclear, although detailed investigations are present in the literature [5, 6,7]. The relevant issue
of factorization within akt-dependent approach has also been investigated [8]. The latter prop-
erty together with a precise knowledge of the scale dependence ofkt-distributions would allow to
relate to each other data coming from experiments at different energies and, more important, to
test factorization quantitatively. Although a definitive answer is absent in the literature, there have
been however some attempts, see for example [9, 10]. In particular we will focus on the equations
proposed by us in Ref. [11] which are the space-like version of the ones proposed in Ref. [12]. In
a subsequent phemonelogical study [13], performed in the context of semi-inclusive deep inelastic
scattering, it was shown that a reasonable description of data could be obtained once unintegrated
evolution equations were solved with suitable, but motivated, initial conditions and assuming fac-
torization for the cross-sections of interest. This result stimulated us to applythe same formalism to
the description Drell-Yan type processes in hadronic collisions [14]. Thept-spectrum of the gauge
boson has, in fact, a rich transverse structure and involves both perturbative and non-perturbative
aspects of the underlying theory. The resummation of the perturbative series in the multiple soft
gluon emission limit can be accomodated by using properly modified unintegratedevolution equa-
tions [15] so that the structure of the non-perturbative form factor canbe investigated.

2. Space-like kt-dependent evolution equations

Transverse momentum dependent parton distribution function,F i
P(xB,Q2,kkk⊥), give the prob-

ability to find, at a given scaleQ2, a partoni with longitudinal momentum fractionxB and trans-
verse momentumkkk⊥ relative to the parent hadron momentum. The evolution equations forkt-
distributions proposed in Refs. [11, 13] read

Q2 dF i
P(xB,Q2,kkk⊥)

dQ2 =
αs(Q2)

2π

∫ 1

xB

du
u3 Pji(u)·

·
∫

d2lll⊥
π

δ ((1−u)Q2− l2
⊥)F

j
P

(xB

u
,Q2,

kkk⊥− lll⊥
u

)
, (2.1)

and resum large logarithms associated to the emission of collinear partons. However, at variance
with ordinary evolutions equations [16], the transverse momentum generated at each branching,lll⊥,
is explicitely taken into accont kinematically and eventually adds to the non-perturbative one due to
Fermi motion of the parton in the parent hadron. If we now considerF to be the bare distribution
of a quark in a quark, neglecting flavour indeces, we may insert the source termF (x,Q2,kkk⊥) =

2



P
o
S
(
D
I
S
 
2
0
1
0
)
2
1
8

Scale evolution of kt-distributions Federico Alberto Ceccopieri

Figure 1: Pictorial representation of the proposed evolution equation. The longitudinal and transverse
component of the partons involved in the splittingk̃ → k + l are indicated.

δ (1− x)δ (2)(kkk⊥) into eq. (2.1) obtaining, up toO(αs), the following result

F (x,Q2,kkk⊥) = δ (1− x)δ (2)(kkk⊥)+
αs

2π
1
π

1

k2
⊥

P(x) , (2.2)

which indeed exposes the singularity associated to the emission of a collinear parton weighted
by splitting functionsP(x) [16]. In order to clarify the role of the new ingredients appearing in
eq. (2.1), it proves useful to consider just one emission, see Fig. (1).The small blob at the bottom
left of the figure then symbolizes the iteration of emissions in the parton ladder of whose only
the last,̃k → k + l, is explicitely shown. Transverse momentak̃kk⊥ andkkk⊥ are defined with respect
to the incoming hadron direction, whilelll⊥ is defined with respect tõk direction. The transverse
momentum̃kkk⊥ and longitudinal momentum̃x of the branching partoñk are written as a function
of the relative transverse momentumlll⊥ and the fractional momentumu appearing in the splitting.
They can be expressed ask̃kk⊥ = (kkk⊥− lll⊥)/u and x̃ = x/u, respectively. The former is a result of
the transverse boost from̃k to hadron direction [17]. Both can be found in the distribution under
convolution in the right hand side of eq. (2.1). The additional integrationd2lll⊥and theδ -function
appearing in eq. (2.1) are associated with the phase space and mass-shell contraint of the emitted
partons. The latter can be written as

l2
⊥ = −(1−u)k2 +u(1−u)k̃2 , (2.3)

where the emission of massless partons has been assumed (l2 = 0). As is well known, logarithmi-
cally enanched contributions arise when the interacting parton virtuality increases along the ladder.
Therefore in the limit̃k2 ≪ k2 we may neglect̃k2 with respect tok2 and set−k2 = Q2, obtaining
l2
⊥ = (1−u)Q2, which can be found in eq. (2.1). Furthermore, we assumekt-distributions to fulfil

the normalization condition:
∫

d2kkk⊥F
i
P(xB,Q2,kkk⊥) = f i

P(xB,Q2) , (2.4)

where f i
P are ordinary parton distributions. It is important to remark that integrating eq. (2.1) over

d2kkk⊥ and by using eq. (2.4) we recover the ordinary evolution equations forf i
P [16] .
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Figure 2: Left and middle panel: average transverse momentum〈k2
⊥〉 for up-quark and gluon at three

different scales:Q2
0 = 5 GeV 2 (−), Q2 = 10 GeV 2 (−−) and Q2 = 20 GeV 2 (− ·−) . Right panel: the

transverse spectrum of the up quark distributions at fixedxB = 0.1 at the previously indicated three different
scales.

3. Numerical solutions

The unintegrated evolution equations, eq. (2.1), are numerically solved bya finite difference
method on a discrete grid in(xB,kkk⊥) space. The initial conditions at the starting scaleQ2

0 = 5 GeV 2

are chosen to have the factorized form

F
i
P(xB,Q2

0,kkk⊥) = f i
P(xB,Q2

0)
1

π < k2
⊥,i >

e

−k2
⊥

<k2
⊥,i> i = q, q̄,g (3.1)

where f i
P(xB,Q2

0) are ordinary parton distributions [18]. The choise of a energy (xB) independent
guassian transverse factor in eq. (3.1) is supported, for example, by recent semi-inclusive deep in-
elastic scattering data at low energy [19]. The width〈k2

⊥,i〉 are fixed to a value of 0.25 GeV 2 both
for quarks and gluons [13]. Since the initial conditions, eq. (3.1), by construction fulfil eq. (2.4),
the latter can be checked for every values ofxB andQ2 to estimate and, eventually, to improve the
numerical accuracy of the evolution. For this check to be meaningful we adopt the same flavour
scheme and coupling values used in Ref. [18]. The evolved distributions show indeed some in-
teresting properties. In the left and middle panel of Fig.(2) we present theaverage transverse
momentum,〈k2

⊥〉, as a function ofxB calculated at three different scale for up quark and gluon,
respectively. In both cases, the averaged transverse momentum at the final scale,Q2 = 20 GeV 2,
increases with decreasingxB. The effect is more evident in the gluon case, due to the singular
behaviour ofPgg(u) at smallu. In the opposite limit,xB → 1, the averaged transverse momentum
approaches the value given in the initial condition and indicated by the horizontal line in left and
middle panel of Fig.(2). In this limit, phase space only allows the emission of soft partons which
generate negligible trasverse momentum. In the right panel of Fig. (2) it is shown the up-quark
distribution at fixedxB = 0.1 as a function ofk2

⊥. Interestingly, the factorized form of eq. (3.1)
is not preserved under evolution. The guassian dependence onk2

⊥ at Q2
0 is turned into a inverse

power law 1/(k2
⊥)a at the final scaleQ2, the latter dependence in qualitative agreement with matrix
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elements behaviour at largek2
⊥, eq. (2.2). We also observe that, asQ2 increases, the distributions

start topopulate the higherk2
⊥ region, as an effect of the leading logarithmic approximation built-in

the evolution equations.

Conclusions

In this contribution we have reviewed some of the features of the unintegrated evolution equa-
tions proposed by us and discussed some peculiar properties of the evolvedkt-distributions obtained
by numerical solution. The use of unintegrated distributions is indeed phenomenologically appeal-
ing [13, 14]. Most interestingly, the analysis of jet observables within this framework may give
access to valuable informations on the unintegrated gluon distributions which describes hadron
structure as probed in high energy collisions. However, the departure from a pure collinear scheme
introduces a number of non trivial problems which are at present underinvestigation by many
groups. This implies that, to date, any conclusive statement on the validity ofkt-distributions ap-
proach in general, and on the proposed evolution equations in particular,must wait for further
theoretical developments.
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