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1. Introduction

Transverse momentum dependent, or equivalektigistributions are currently object of in-
tense research activity due to their wide range of applicability in the desgriptibadron initiated
hard processeg][{] 2]. The uselefdistributions is indeed phenomenologically appealing since
observables constructed upon them show a reasonable agreemenataitdrdady in lowest or-
der, which is not the case for predictions based on collinear factorizatithe same accuracy, see
for instance the discussion in Reff] [3]. Their correct formalization inntusm-chromodynamics
appears to be well established only at high enefdy [4]. Away from this linaitsituation is still
unclear, although detailed investigations are present in the literdfufe [, Bhe relevant issue
of factorization within ak;-dependent approach has also been investig@ted [8]. The latter prop-
erty together with a precise knowledge of the scale dependengedadtributions would allow to
relate to each other data coming from experiments at different energigsrame important, to
test factorization quantitatively. Although a definitive answer is absengititérature, there have
been however some attempts, see for exanjple [9, 10]. In particular wepwiils fon the equations
proposed by us in Ref[ [lIL1] which are the space-like version of the praposed in Ref[[12]. In
a subsequent phemonelogical stidy [13], performed in the contegtwfiaclusive deep inelastic
scattering, it was shown that a reasonable description of data coulddieesbonce unintegrated
evolution equations were solved with suitable, but motivated, initial conditindsaasuming fac-
torization for the cross-sections of interest. This result stimulated us to #ppgame formalism to
the description Drell-Yan type processes in hadronic collisipris [14]. pi+epectrum of the gauge
boson has, in fact, a rich transverse structure and involves both Ipatitte and non-perturbative
aspects of the underlying theory. The resummation of the perturbaties serthe multiple soft
gluon emission limit can be accomodated by using properly modified unintegrabidtion equa-
tions [15] so that the structure of the non-perturbative form factorbeaimvestigated.

2. Space-like k-dependent evolution equations

Transverse momentum dependent parton distribution functi@iixs, Q%,k, ), give the prob-
ability to find, at a given scal€?, a partoni with longitudinal momentum fractiorg and trans-
verse momentunk, relative to the parent hadron momentum. The evolution equationk for
distributions proposed in Ref§. J11,]13] read

d.Z5(xs, Q% k as(Q?) [ldu
Q? p(x8 (2? 1) _ as(Q) / b ()-
dQ 2l Jxg U
d?l i /X k, —I
[EEsa-u@ - A (PR ) @
T u u

and resum large logarithms associated to the emission of collinear partongvetpat variance

with ordinary evolutions equationg ]16], the transverse momentum gedexttach branching,
is explicitely taken into accont kinematically and eventually adds to the nonrpative one due to
Fermi motion of the parton in the parent hadron. If we now considdp be the bare distribution

of a quark in a quark, neglecting flavour indeces, we may insert thesderm.# (x,Q? k) =
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Figure 1. Pictorial representation of the proposed evolution eguati The longitudinal and transverse
component of the partons involved in the splittikng- k+ | are indicated.

5(1—x)6@ (k. ) into eq. [2.]1) obtaining, up t&(as), the following result

as; 11
27'[7'[k2

F (% Q% k1) = 8(1-x)3P (k.) + P(x), (2.2)
which indeed exposes the singularity associated to the emission of a colliaean pveighted
by splitting functionsP(x) [[Lf]. In order to clarify the role of the new ingredients appearing in
eq. (2.1), it proves useful to consider just one emission, see[FigT®)small blob at the bottom
left of the figure then symbolizes the iteration of emissions in the parton laddehase only
the lastk — k+1, is explicitely shown. Transverse momeﬁt@ and kL are defined with respect
to the |ncom|ng hadron direction, while is defined with respect tk direction. The transverse
momenturrkl and longitudinal momenturx of the branching partok are written as a function
of the relative transverse momentdmand the fractional momentumappearing in the splitting.
They can be expressed ks = (k, — I, )/uandX = x/u, respectively. The former is a result of
the transverse boost frokito hadron direction[[17]. Both can be found in the distribution under
convolution in the right hand side of eq. (2.1). The additional integradfdnand thed-function
appearing in eq[(21) are associated with the phase space and miassrehant of the emitted
partons. The latter can be written as

12 = —(1—u)k® +u(1—u)k?, (2.3)

where the emission of massless partons has been asslime@)( As is well known, logarithmi-
cally enanched contributions arise when the interacting parton virtualityasessalong the ladder.
Therefore in the limitk? < k? we may negleck? with respect td? and set—k? = Q2, obtaining
12 = (1—u)@?, which can be found in eq[ (2.1). Furthermore, we asskntistributions to fulfil
the normalization condition:

/ o2k, Fb(xe, QK. ) = Th(xe, Q?). (2.4)

wherefé, are ordinary parton distributions. It is important to remark that integrating@d) over
d?k; and by using eq[{J.4) we recover the ordinary evolution equationffi] .
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Figure 2. Left and middle panel: average transverse momentkt for up-quark and gluon at three
different scales:Q3 = 5 Gev2 (), Q? = 10 Ge&/2 (——) andQ? = 20 G&/? (— - —). Right panel: the
transverse spectrum of the up quark distributions at fiee 0.1 at the previously indicated three different
scales.

3. Numerical solutions

The unintegrated evolution equations, €g.](2.1), are numerically solvedibite difference
method on a discrete grid {ixg, K, ) space. The initial conditions at the starting s@@e: 5 Gev?
are chosen to have the factorized form

_K2
; ; 1 > _
2 2 <k§ > .
Fp(xe, Qg, K1) = fﬁ(X&Qo)We W i=0,0,9 (3.1)

where f,L(xB,Q%) are ordinary parton distribution§ [18]. The choise of a energy independent
guassian transverse factor in €g. [3.1) is supported, for examplecbptrsemi-inclusive deep in-
elastic scattering data at low enerdy][19]. The Wi(kﬁi) are fixed to a value of.@5 G&/2 both

for quarks and gluondJL3]. Since the initial conditions, ¢q.](3.1), bystaction fulfil eq. [24),
the latter can be checked for every values@indQ? to estimate and, eventually, to improve the
numerical accuracy of the evolution. For this check to be meaningful wptatle same flavour
scheme and coupling values used in REf] [18]. The evolved distributiuns mideed some in-
teresting properties. In the left and middle panel of []g.(2) we presenavtbeage transverse
momentum,(kﬁ), as a function ofg calculated at three different scale for up quark and gluon,
respectively. In both cases, the averaged transverse momentum atathecéile Q2 = 20 Ga/2,
increases with decreasing. The effect is more evident in the gluon case, due to the singular
behaviour ofPy(u) at smallu. In the opposite limitxg — 1, the averaged transverse momentum
approaches the value given in the initial condition and indicated by the mbgilzine in left and
middle panel of Fig[{2). In this limit, phase space only allows the emission of adftigs which
generate negligible trasverse momentum. In the right panel of [fig. (2) ibisrsthe up-quark
distribution at fixedxg = 0.1 as a function oki. Interestingly, the factorized form of ed. (8.1)
is not preserved under evolution. The guassian dependenk% a‘nQ% is turned into a inverse
power law y(ki)a at the final scal€?, the latter dependence in qualitative agreement with matrix
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elements behaviour at largé, eq. (2.2). We also observe that, @$increases, the distributions
start topopulate the highetki region, as an effect of the leading logarithmic approximation built-in
the evolution equations.

Conclusions

In this contribution we have reviewed some of the features of the unintegestdution equa-
tions proposed by us and discussed some peculiar properties of theakedlistributions obtained
by numerical solution. The use of unintegrated distributions is indeed piemalogically appeal-
ing [L3,[I4]. Most interestingly, the analysis of jet observables within tlimméwork may give
access to valuable informations on the unintegrated gluon distributions whgitrildes hadron
structure as probed in high energy collisions. However, the departured pure collinear scheme
introduces a number of non trivial problems which are at present ungestigation by many
groups. This implies that, to date, any conclusive statement on the validitydidtributions ap-
proach in general, and on the proposed evolution equations in partiouest, wait for further
theoretical developments.
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