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Colour confinement and massive gluons

1. Introduction

Strong interactions of hadrons are considered to be governed by QCD dealing with the inter-
actions of quarks and gluons. It is a gauge theory based on the colour SU(3) group and a strongly
interacting particle belongs to an irreducible representation of this group, for instance, quarks and
gluons belong to the colour triplet and octet representations, respectively. It so happens, however,
that those particles that belong to non-singlet representations are not subject to direct observations
and this property is referred to as colour confinement. Thus both quarks and gluons are unobserv-
able, and the only observable particles are colour singlet composite particles called hadrons.

Experimentally, we can study the properties of quarks and gluons only through hadrons. In
order to study hadron-hadron interactions theoretically we shall first illustrate the problem by a
similar one in QED. The interaction between two charged particles is governed by Coulomb’s law,
but the interaction between two electrically neutral particles is represented by the van der Waals
potential,

Viaw (r) o< r°. (1.1)

This shows that the electric fields generated by neutral systems penetrate into the vacuum without
any sharp cut-off.

In QCD we can elucidate the dynamical properties of colour-neutral hadrons with reference to
dispersion relations. For the scattering of hadrons, for instance, they remain applicable provided
that confinement excludes quarks and gluons from the physical intermediate states appearing in the
unitarity conditions. This is precisely the condition for colour confinement. As a typical example,
let us consider nucleon-nucleon scattering, then the potential between them is given by the pole
contribution in the crossed channels. The least massive hadron that can be exchanged between
them is the pion, and the resulting interaction is represented by the Yukawa potential,

exp(—pr)

Vy (r) o< - (1.2)

where p denotes the pion mass.

In comparison with the van der Waals force in QED we recognize that the flux of the colour
gauge field emerging from colour singlet nucleons cannot penetrate into the confining vacuum
beyond a certain range thereby leaving no trace of long-range forces and that the penetration depth
is given by the pion Compton wave length. Thus we recognize a similarity between the Yukawa
mechanism for generating nuclear forces and the Meissner effect in the type II super conductors.
This similarity strongly suggests that the vacuum allows penetration of the flux of the colour gauge
field generated by hadrons only by a finite length.

Thus we many point out two salient features of QCD on the basis of the experimental proper-
ties of hadrons: i) colour confinement, ii) finite penetration length of the fluxes of the colour gauge
field.

The first one, colour confinement, has been elucidated in [1—8] and we shall concentrate
ourselves on the second problem in the present article. Actually, we interpret ii), finite penetration
length, as an evidence for massive gluons and we shall show that realization of colour confinement
as interpreted in [1 —8] automatically leads to massive gluons. This is the main subject of this

paper.
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In Sec. 2 we shall recapitulate the arguments for colour confinement based on BRST invariance
[11] and asymptotic freedom [9, 10]. In Sec. 3 we shall show that gluons turn out to be massive
when colour confinement is realized. In Sec. 4 we show that confinement is realized only in the
gauges in which Z; ' = 0 is realized. This is referred to as the confinement phase. On the other
hand, gluons remain massless in the other gauges in which the above condition is not met, and this
case is referred to as the deconfinement phase.

2. BRST Invariance and Colour Confinement

In this section we shall recapitulate the essence of the interpretation of colour confinement that
has been developed in a series of articles [1 —8].

In a covariant quantization of gauge fields introduction of indefinite metric is indispensable.
Thus the resulting state vector space #” involves unphysical states of indefinite metric and we have
to find a criterion to select physical states out of #. For this purpose we employ the Lorentz
condition in QED as a subsidiary condition, but it is more involved in non-Abelian gauge theories.
In what follows we shall confine ourselves to QCD, and in order to fix the notation we start from
its Lagrangian density in the metric g, = diag(1,—1,—1,—1)

Zzﬁnv+c%f+$FP7 (2.1
where
1
Loy = =7 PP Fay + 9 (F Dy~ m)y, (2.22)
Loy = ~A"-duB+ BB, (2.2b)
Lrp = —i8“E-Duc (2.2¢)

in the customary notation [1 —8]. We have suppressed the colour and flavor indices in (2.2). The
second Lagrangian density (2.2b) is the gauge-fixing term in which o denotes the gauge parameter
and B the Nakanishi-Lautrup auxiliary field. The last one (2.2c) is the Faddeev-Popov ghost term,
and the hermitian scalar fields ¢ and ¢ are anticommuting and are called Faddeev-Popov (FP) ghost
fields. The local gauge invariance is respected only by the first term (2.2a) but not by the other two,
(2.2b) and (2.2¢), introduced for the purpose of quantization. The total Lagrangian is invariant,
however, under the global BRST transformations [11] defined below.

BRST transformations

Let us consider an infinitesimal gauge transformation of the gauge and quark fields and replace
the infinitesimal gauge function either by c or ¢. They define two kinds of BRST transformations
denoted by & and &, respectively.

8A, = Dyc, S§Au =Dy, (2.3)
Sy =iglc-T)y, Sy =ig(c-T)y. 2.4)
where the matrix 7 is introduced in the covariant derivative of y as

Dyy = (dy —igT -Ap)V, (2.5)
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For the auxiliary fields B, ¢ and ¢ local gauge transformations are not even defined, but their BRST
transformations can be introduced by requiring the invariance of the local Lagrangian density,
namely,

L =38%=0. (2.6)

We shall not write them down explicitly, however, since they are not relevant to the following
arguments. Noether’s theorem states that the BRST invariance of the Lagrangian density amounts
to two conserved BRST charges denoted by Qp and Qp. They satisfy

8¢:i[Q37¢]:F7 g‘P:i@Baq)];a (27)

where we choose the —(+) sign, when the field ¢ is of an even (odd) power in the ghost fields ¢
and c.
Equations of motion for the gauge field can be expressed with the help of BRST transforma-
tions as [1—8]
M Fyy + gly = i68Ay, (2.8)

where J,, denotes the colour current density and g the gauge coupling constant. It is worth noting
that all three terms in Eq. (2.8) are divergenceless separately, in particular

9V (i68A,) = 0. (2.9)
The BRST charges are hermitian and nilpotent, for example,

0, =08  03=0. (2.10)

The nilpotency implies introduction of indefinite metric and a physical state | f) is defined by the
constraint

Oslf) =0, [f)e7. (2.11)

The set of physical states including the vacuum state |0) forms the physical subspace of #* denoted
by 7/phys’
Vonys = {1f) : OBl f) =0, [f) € V'}. (2.12)

Then the S matrix is BRST invariant and satisfies
0S=1i[0B,5] =0, (2.13)

so that the physical subspace ¥, is an invariant subspace of the S matrix.
Furthermore, we introduce a subspace of ¥ called the daughter subspace ¥, defined by

Ya={lf):1f) = Qslg). l8) € V'}. (2.14)
Then because of the nilpotency of Qp, ¥ is a subspace of ¥y,
Ya C Vphys, (2.15)
and we introduce the Hilbert space 7 by

A= Vs V. (2.16)
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We may compare ¥y, ¥z and 5 to closed forms, exact forms, and cohomology in Cartan’s
algebra and (2.16) may be called the BRST cohomology [3, 13, 14].

When the quark and gluon states are not physical, they are unobservable and hence confined.
Thus the problem of colour confinement reduces to demonstration of the conditions

Qg|quark) # 0, Qs|gluon) # 0. (2.17)

In a series of papers [1 —8] it has been shown that the criterion for colour confinement takes a
simple form
C=0, (2.18)

where the constant C is defined by
9" (i66A%(x),A%(y)) = i8,5CI;8* (x—y) (j=1,2,3). (2.19)

Here and in what follows (---) denotes the vacuum expectation value of the time-ordered product.
Furthermore, with the help of the renormalization group and asymptotic freedom [1 -5, 14], it
has been shown that the conditions (2.18) follows from

z;' =0, (2.20)

where Z3 is the renormalization constant of the colour gauge field.

It has already been shown by Oehme and Zimmermann [15] without reference to perturbation
theory that the above condition is satisfied in the Landau gauge for Ny < 10 on the basis of RGE
and asymptotic freedom. It is true that the anomalous dimensions in RGE are evaluated in pertur-
bation theory, but even then some results are valid beyond perturbation theory thanks to asymptotic
freedom. Depending on the nature of the objects RGE provides results at different levels of pre-
cision, namely, (1) approximate or semi-perturbative, or (2) exact. For instance, evaluation of the
coefficient functions in the operator product expansion falls into the first category, whereas exam-
ination of some global properties of the theory falls into the second category. In fact, asymptotic
freedom itself follows from the negative beta function evaluated in the lowest order, but this con-
cept of asymptotic freedom is considered to be valid beyond perturbation theory. Likewise, the
condition (2.20) for colour confinement falls into the second category. This condition has been
derived from unbroken non-abelian gauge symmetry and asymptotic freedom related to the high
energy behavior of the quark-gluon system. When Z3 !'is expressed as the integral of the Lehmann
spectral function of the gluon propagator over the entire energy region, however, Eq. (2.20) indi-
cates a delicate balance of the contributions from all energy regions including both ultraviolet and
infrared. In this sense this condition gives an indirect constraint on the infrared behavior of this
system. This should be contrasted with Wilson’s area law in which the low-energy or long-distance
behavior plays a dominant role in explaining quark confinement. It is also worth emphasizing that
as a consequence of the above condition all the particles belonging to non-singlet representations
of the colour group are confined for the same cause.

3. Pole Structure of Green’s Functions and Massive Gluons

In this section we shall show that gluons turn out to be massive when the condition for colour
confinement (2.18) is satisfied. For this purpose we start form Eq. (2.8). This equation has been
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given in the unrenormalized form so that we put the script (0) to unrenormalized expressions and
rewrite (2.8) as
M E +goly) =i88AY. (3.1)

Then we study its relationship to the renormalized version, and in order to facilitate understanding
of the nature of the problem we start from its abelian version or QED, namely,

MES) + el = —0,B), (3.2)
The multiplicative renormalization of fields and parameters relevant to this equation can be sum-
marized as
0 1/2 —1/2 0
AV =74, BO=z"B, V=1, (3.3)
eo=2;"% = a=2za (3.4)

The renormalized version of Eq. (3.2) is given by
auFuv +€fv = _a\/B7 (35)

where
eJy =275 [edy + (1 —23)0,B]. (3.6)

It so happens that both 0" F};, and dyB are multiplicatively renormalized but with different mul-
tiplicative factors. This mismatch forces to introduce operator mixing for renormalization [16].
Since both aﬂFuv and dy B are finite operators so must be Jy too.
Essentially the same situation takes place in QCD, and the renormalized version of (3.1) is
given by
M F], +gJy = i85AS, (3.7
where JZ is a linear combination of J¢ and i§SA%. The space integral of J§§ gives the colour charge
0.
0 = / PrJi (), (3.8)

satisfying the commutation relations of the colour SU(3) algebra,
0.0"] = ifune0”. (3.9)

With the help of Eq. (3.7) we can write down an equation for two-point Green’s functions of the
form

(O™, (x), A5 (1) + (g (x), AV (v)) = (i88Af, AL(Y)). (3.10)

In what follows we shall study the structure of the Fourier transforms of these Green’s functions.
Let Fy, and Gy be vector fields and introduce

—i

(Fu(2),Gv ) = [tk T 1), (3.11)

and the Fourier transform of (F,, Gy) is denoted by

Tuv(k) = FT(Fy,Gy). (3.12)
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Then 7}, can be expressed as a linear combination of two covariants:

kyky kyky
Tuv (k) = — =22 Ty (k) — Ty (k* 3.13
e () = = A T ) — (v — )T (R) (313
Next we introduce two conditions:
Condition 1) Assume d, F, = 0 and/or d, G, = 0, then we get
To(kz) =Ty, constant. (3.14)

Condition 2) Assume in addition to the condition 1) that Q|0) = (0|Q = 0, where

— [ @R, (3.15)

then we have
Ty =0. (3.16)

Indeed, when this condition is not met we have a broken symmetry and the Nambu-Goldstone
boson shows up in the form 7j # 0.

All three terms in Eq. (3.10) satisfy the condition 1) and their Lehmann representations are
given as follows. First, by taking account of the antisymmetry between subscripts A and ut, we find

FT<F7L[,L7AV> = —l'(klg”v k‘uglv |: +/ —m2+18:| (317)
so that we obtain
kyk o1 (m?)
A _ urtv 2 2 1
FT<8 FA“,AV>——Rk2_18+(k g#v—kukv)/dm m (3183)
Then, thanks to the condition 2), we have in the absence of operator mixing
FT(g/y,Ay) = —(KPguy — kyuky) /d 2£ (3.18b)
—m?+ig
Finally we have
oS kyky 2 2 O3 (mz)

In what follows we shall study the properties of these integral representations in more detail
in QED and QCD.
In QED we have R = C = 1, so that

kyk o(m?)
A %Y 2 2
and ok
FT(—dyB,Ay) = ——5— 3.20
< ues V> k2+l'8’ ( )



Colour confinement and massive gluons

so that we have

2
~ o\m
FT(eJu,Av>:(kzguv—kukv)/dmzkz () (3.21)

—m?+ig’
The absence of the massless pole term in (3.21) reflects the fact that the conservation of charge is
not broken.

In QCD let us assume that the condition for colour confinement (2.18) is satisfied, then we
have

5 2 2 o3(m?)
which justifies the absence of the operator mixing in (3.18b). Since fp is a linear combination of

Jy and i55A#, we can form a linear combination of (3.18b) and (3.22) to find

~ 52(”12)
FT(gJ,,Ay) = —(Kgpuy —kukv)/dm2k2

e 329

where &, is a linear combination of 6, and 63. Then substituting (3.18a), (3.22) and (3.23) for
Green’s functions in Eq. (3.10) we find

R=0, (3.24)

or

O] (mz)

A 2 2

Thus we find that there are no contributions to this two-point function from massless gluon states
indicating the absence of the massless gluon.

Then what would be the mechanism for generating the finite gluon mass? A possible candidate
is the gluon condensate defined by

(0]A (x)A}, (x)|0) = 8K # 0. (3.26)

A BRST invariant modification of (3.26) has been considered by Kondo et al to introduce an effec-
tive gluon mass [17]. For phenomenological implications of such a gluon condensate as in (3.26),
see e.g. [18]. In the Lagrangian density (2.2a) we find a term quartic in the gauge field and replace-
ment of a pair of gauge fields by their vacuum expectation values (3.26) yields a mass term. By
keeping only bilinear terms relevant to the description of the free massive gluon field, we find

1 1
Ly = ZAZ‘VAZV - 5mgAgA;;, (3.27)

where
AL, =AY — 0VAY, (3.28)
m} = gker(G)K, (3.29)

where ¢;(SU(N)) = N. This gluon condensate does not violate the colour SU(3) symmetry nor the
BRST invariance provided that the mass term in (3.27) is dynamically generated.
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4. Equivalence Class of Gauges

In Sec. 2 we have introduced the QCD Lagrangian density that depends on the gauge parame-
ter . We shall study here how theoretical predictions depend on this parameter.

In perturbation theory all the observable quantities are independent of the choice of the gauge
parameter, but this is not the case in the non-perturbative approach as we shall see later in this
section. Let us consider a class of Lagrangian densities {.% } representing a gauge theory such as
QCD. Assume that all the members of this set are BRST invariant,

0%n =0, 4.1

and further that the difference between any two elements of this set is exact so that it can be
expressed as the BRST transform of a certain operator .,

AN = Ly— L =84, (4.2)

then this set {.Z% } is called an equivalence class of gauges (ECG) in a loose sense. We shall show
latter, however, that we have to introduce an additional condition for identifying the element of an
ECG in the non-perturbative approach.

Lagrangian densities corresponding to different choices of ¢ in (2.2) belong to the same class
in perturbation theory since we have

AZ = %(Aa)B-B - —%(Aa)5(E-B), 43)

or

M=~ (8a)(eB). (4.4)

Now we introduce Green’s functions in two gauges of the same ECG; then they are related to one
another through the Gell-Mann-Low relation [19]:

(A(x1)B(x2) -+ )i = (A(x1)B(x2) - - -exp(iAS))1, (4.5)
where A, B, --- are local operators, and
AS— / PAYL = § / &l 4.6)

In particular, when all the local operators are BRST invariant, namely
0A=06B=---=0, 4.7)
we obtain
(A(x1)B(x2) )i = (A(x1)B(x2) -+ )1, (4.8)

by expanding the r.h.s of Eq. (4.5) in powers of AS. Since A, B,--- are closed and AS is exact, we
have
(A,B,---,(AS)") = 0. 4.9)

Since we are exploiting a series expansion in powers of AS, the proof of (4.8) is based on an
assumed convergence of this series.
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In what follows we shall restrict ourselves to the Lagrangian density (2.2) and assume that all
the quark masses have certain fixed values. Then a theory is characterized by o and g?>. We shall
plot (&, g?) on a two-dimensional half-plane

—o< <o, g2>0, (4.10)

then each point on this half-plane corresponds to one theory. Now we introduce renormalization
group (RG) with the generator of this RG given by [14]

0 d d
g_“ﬁ_‘_ﬁ(g)aig_za%/(g?a)%v (411)

where u denotes the renormalization point with dimension of mass and 7y is the anomalous dimen-
sion of the colour gauge field. Since we have discussed applications of RG to Green’s functions
elsewhere [3, 14], we shall confine ourselves to the study of running parameters defined by

Il
¢

xp(p7) - a, (4.12)
xp(p%) -1 =elp,

p)
()
()

=l Q %l
[l
o o

where p denotes the parameter of RG. In what follows we shall concentrate our attention on g(p)
and o(p).

When we increase p from 0 to e, the point(a(p),g(p)) moves along a line called the RG flow
line (RGFL). Two theories corresponding to two points on the same RGFL are completely equiv-
alent and physically identical as has been clarified in the applications of RG to Green’s functions
[3, 14]. The asymptotic limits of these running parameters are denoted by

8(0) = 8w, 0(0) = Otes, (4.13)

and such a point represents a sink of the RGFL. Asymptotic freedom that has been assumed
throughout this article is characterized by

8o =0. (4.14)

It should be emphasized that o, can assume only three alternative values depending on the choice
of the starting point of the RGFL, namely

O = _00707 o, (415)
where o depends only on the number of quark flavors Ny in QCD
1 4
=—=(13—=Ny). 4.16
0o = — (13— 3Ny) (4.16)
Without loss of generality we shall restrict ourselves to the following case:

o >0, or Ny < 10, 4.17)

10
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The value of .. depends only on the initial value of o, namely:

oy, for a >0,
O = 0, fora =0, (4.18)
—oo, for a0 < 0.

We recall the arguments on the ECG. Equivalence of two gauges characterized by (o ,g%) and
(a2,83) was based on series expansion in powers of A, and when they belong to the same ECG
so do also (0f1,87) and (@2,85). The equivalence of the latter is based on the series expansion in
powers of A(p). Now assume that a;; < 0 and @, > 0; however small the difference A = a — o
might be, o tends to « and o, to o so that Ac(p) tends to eo. This fact casts a doubt on the
convergence of the power series and we may conclude that these two points do not belong to the
same ECG. Thus it is very likely that we have two sets of ECG defined on the two-dimensional
parameter half-plane

S
|
&
I

{(ar,g%) : ¢ <0, g* >0}, (4.19)
P(a0) ={(a,8%) : >0, g > 0}, (4.20)

Both of them are two-dimensional domains, but in addition we have a one-dimensional line which
forms the border between them, namely,

L(0)={(a,g*) : ¢ =0,g° > 0}. 4.21)

Indeed, @(p) shows a discontinuity at o = 0 when p is chosen sufficiently large as it is the case
for 0t.. Then with the help of Eq. (4.9) of [4], i.e.

P
G(pis. o) =exp | [ ap's(p") |- Glpia(p). a(p). (o))

where Y denotes the anomalous dimension of the Green’s function in question, we may conclude
that Green’s functions also develop a discontinuity at o = 0. This discontinuity is certainly reflected
in the Green’s functions, for instance, in the form of the residue of the massless pole of the gluon
propagator studied in the preceding section.

In this connection it is also important to recognize that particle masses defined as the pole
positions of propagators are independent of p and thus are RG invariant as is clear from the above
relationship.

Thus it seems likely that we have three ECG specified by the value of 0.

It has been shown already that the renormalization constant Z3 of the colour gauge field is
given by [3, 14]

77 = O% (4.22)
This constant is related to C in (2.19) through the formula [1 — 8]

Cp) =alp) -2 /p “ap (W) + 7 (0) ) alp yexp [—2 /p ' dp”%p(p")] SN S0

11



Colour confinement and massive gluons

where Yrp is the anomalous dimension of the Faddeev Popov ghost fields and @(p) is given by

_ ap)
a(lp)=——+-. 4.24
(p) = (4.24)
The validity of Eq. (4.23) has been tested in QED with the result that it reproduces C = 1 correctly
and the lack of asymptotic freedom in QED does not allow C to vanish. Hence charge confinement
does not take place in QED. Therefore we have

_ 0, in Z(—ee) and L(0),
zZl = { _ (4.25)
o in Z(a).
Combining (4.23) and (4.25) we find
C=0, in Z(—oo) and L(0), (4.26)

C#0, in 2().

This amounts to the conclusion that gluons are massive in the confinement phase, Z(—eo) and L(0),
whereas they remain massless in the deconfinement phase Z(oy).

The case of ap < 0 is slightly more complicated, but essential features such as the existence
of two phases are the same.

5. Conclusions

Theories described by the Lagrangian density (2.1) corresponding to different choices of the
gauge parameter o belong to the same ECG in perturbation theory. This class is split into three,
however, in non-perturbative approach depending on their convergence properties. Green’s func-
tions in QCD are expanded in double power series in g? and ag”, and the critical parameters
governing the convergence of the expansion are the asymptotic values of g2, o, and og?. The
last one cannot be evaluated exactly, but is is still possible to judge whether it is equal to zero or
non-zero.

In order to clarify the differences among the three classes in the convergence properties we
shall tabulate them in what follows:

Case1) ap > 0or Ny < 10.

region (ag®)w | Z3 confinement | gluon mass
D(—e0): #0 0 yes #0

D(0) or L(0): | O 0 yes #0

D(ap) 0 # 0,00 | no 0

In this case D(0) or L(0) is a straight line o = 0 and forms the border between D(—eo) and
D(oo).

12



Colour confinement and massive gluons

Case2) op <0or10 <Ny < 16.

region (00g?)eo Zy ! confinement | gluon mass
D(—oo): #0 0 yes #0

D(op) or L(op): | O # 0,00 | no 0

D(0) 0 o0 no 0

In this case D(0g) or L(0y) is a RGFL and forms the border between D(—oo) and D(0).

Our naive belief in the independence of physics on the gauge parameter is no longer justified,

but instead three phases show up. There are confinement and deconfinement phases, and in the

former gluons turn out to be massive and in the latter they remain massless.

Colour confinement is one of the central issues in QCD so that there are various interpretations

of this feature. In this paper we have adopted the interpretation that coloured particles are not

subject to observation just because coloured states are unphysical in the sense of Eq. (2.16). Then

the emergence of massive gluons is an inevitable consequence of this interpretation.
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