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The contribution of unresolved sources to the diffuse gamma-ray background could produce

anisotropies in this emission on small angular scales. Recent studies have considered the angu-

lar power spectrum and other anisotropy metrics as tools foridentifying contributions to diffuse

emission from unresolved source classes, such as extragalactic and Galactic dark matter as well

as various astrophysical gamma-ray source populations. Wepresent preliminary results of an

anisotropy analysis of the diffuse emission measured by theFermi-LAT.
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1. Introduction

The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) [1]
is observing the high-energy sky with unprecedented precision and sensitivity. In addition to nu-
merous individual sources, the LAT observes a substantial level of diffuse gamma-ray emission.
This emission includes a Galactic component resulting fromthe interactions of cosmic rays with
the interstellar gas and radiation fields, as well as a component that appears isotropic on large an-
gular scales, which is often assumed to originate from unresolved members of cosmological source
populations.

Many astrophysical sources are guaranteed to contribute tothe large-scale isotropic gamma-
ray background (IGRB), including cosmological populations such as blazars [2, 3] and star-forming
galaxies [4, 5], as well as Galactic source classes whose skydistributions extend to high Galactic
latitudes, e.g., millisecond pulsars [6]. Proposed but unconfirmed sources of gamma-ray emission,
such as the annihilation or decay of dark matter particles inGalactic or extragalactic structures, may
also contribute to the IGRB [7 – 9]. Interestingly, theFermi-measured IGRB energy spectrum [10]
is consistent with a single power law over a large range of energies, and hence lacks any spectral
features which could aid in identifying contributions fromindividual source classes. Moreover,
recentFermi results [11] indicate that the majority of the IGRB does not originate from members
of the source classes already detected byFermi, leaving the origin of this emission a mystery.

To complement searches based on spectral features, recent work has considered the possibility
of using angular anisotropy information in the IGRB to help to reveal its contributors [8, 12 – 17].
If the IGRB is composed of emission from unresolved members of gamma-ray source populations,
characteristic small-scale fluctuations are expected to bepresent due to the variation in the number
density of sources along the line-of-sight in different skydirections.

In this study we searched for angular anisotropies in the IGRB measured by theFermi-LAT.
The angular power spectrum of the emission, after masking low Galactic latitudes and known
sources, was calculated in several energy bins. The resultsfrom the data were compared with those
from a simulated model of the gamma-ray sky in order to identify any significant differences in
anisotropy properties. Preliminary results from this angular power spectrum analysis of the IGRB
are presented.

2. Data selections and processing

The Fermi-LAT is a pair-conversion telescope that uses a tracker and calorimeter to recon-
struct the direction and energy of individual events. An anti-coincidence detector and a tailored
event classification scheme provide the LAT with excellent charged particle background rejection
capabilities. The LAT detects photons with energies from 20MeV to more than 300 GeV, and
achieves an angular resolution of approximately 0.1 deg forphotons above 10 GeV. The LAT has
a large field of viewΩfov ∼ 2.4 sr, and operates primarily in sky-scanning mode, resulting in fairly
uniform sky exposure of roughly 30 minutes every 3 hours. Further details about the instrument
can be found in Ref. [1].

The anisotropy analysis was performed on∼ 22 months of data, using “diffuse class” events
in the energy range of 1 GeV to 50 GeV. The events were binned into 5 energy ranges for the
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angular power spectrum calculation. Using several energy bins increases the sensitivity of the
analysis to source populations that only contribute significantly to the anisotropy in a limited energy
range. In addition, an observation of energy-dependent anisotropy may aid in interpretation of a
measurement in terms of a detection of or constraints on specific source populations [18 – 20].

To serve as a comparison, a simulated model of the gamma-ray sky was constructed using the
gtobssim module of theFermiScience Tools1. The model was composed of a representation of
the Galactic diffuse emission (gll_iem_v02.fit, the publicly-available diffuse model recom-
mended for LAT data analysis2), an isotropic component, and sources in the 11-monthFermi-LAT
source catalog [21].

The data and simulations were processed with theFermiScience Tools using the P6_V3 instru-
ment response functions. The events were binned into order 9HEALPix [22] maps, corresponding
to pixels of∼ 0.1 deg/side. At this map resolution the suppression of angular power due to the
pixelation of the map (the pixel window functionWpix) is subdominant compared to the suppres-
sion of angular power due to the point spread function (PSF) of the instrument (the beam window
function Wbeam). Fermi’s PSF for back-converting events is significantly poorer thanfor front-
converting events, so the front- and back-converting events were analyzed separately through the
angular power spectrum calculation. This choice allowed for a more accurate estimation of the
measurement uncertainties, which depend strongly on the PSF.

The goal of the analysis was to measure the angular power spectrum of the IGRB, so regions
of the sky heavily contaminated by Galactic diffuse emission were excluded by masking Galactic
latitudes|b| < 30◦, and masking sources in theFermi 11-month catalog [21] within a 2◦ angular
radius. In this study we focused on multipolesℓ & 100 (corresponding to angular scales. 2◦),
since lower multipoles (corresponding to correlations over larger angular scales) are likely more
contaminated by Galactic diffuse emission.

We considered the angular power spectrumCℓ of a map of intensity fluctuationsδ I , with
δ I(ψ) = (I(ψ)−〈I〉)/〈I〉, whereI(ψ) is the intensity in the sky directionψ and〈I〉 is the mean in-
tensity of the unmasked region of the map. The angular power spectrum is given by the coefficients
Cℓ = 〈|aℓm|2〉 with the aℓm determined by expanding the map in spherical harmonics. Theangu-
lar power spectrum of intensity fluctuations is dimensionless and hence characterizes the angular
distribution of the emission independent of the intensity normalization. Using this convention, the
amplitude of the angular power spectrum for a single source class is the same in all energy bins
(if the source distribution is independent of energy). However, we emphasize that if the IGRB is
composed of emission from multiple source classes, the amplitude of the fluctuation angular power
spectrum does not indicate the relative contribution of a single source class to the anisotropy of
the total emission, i.e., the fluctuation angular power spectra from multiple source classes are not
linearly additive.

The angular power spectra of the maps were calculated using the HEALPix package [22]. The
measured angular power spectra were corrected for the powersuppression due to the beam and
pixel window functions, and an approximate correction, valid at multipolesℓ & 100, was applied
to account for the reduction in angular power due to masking.For each energy bin, the angular

1http://fermi.gsfc.nasa.gov/ssc/data/analysis/
2http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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power spectra of the maps of front- and back-converting events were calculated separately and then
combined by weighted average.

3. Results

The angular power spectra of the data and of the model in several energy bins are shown in
Fig. 1. TheCℓ were averaged in multipole bins of width∆ℓ= 25, and the angular power spectra are
shown with the photon noise levelCN subtracted, so a measurement above zero indicates the pres-
ence of angular power above the noise level. The error bars indicate the 1-σ statistical uncertainty
in the measurement; systematic uncertainties are not included. We emphasize that uncertainties in
the determination of the PSF can affect the calculation of the measurement uncertainties and the
correction for the beam window function.

At multipolesℓ& 100, angular power above the photon noise level is measured in the data at
energies from 1 to 5 GeV; excess power in the data is also foundat low significance in the 5-10
GeV energy bin. At these multipoles, no significant angular power is seen in the model in any
energy bin. The excess power measured in the data at these multipoles suggests a contribution
from a point source population not present in the model. At multipoles ℓ . 100, angular power
above the noise is clearly seen in both the data and model up toenergies of 10 GeV, and is likely
due to contamination from the Galactic diffuse emission.

Above 10 GeV, no significant power above the photon noise level is measured in the data or
the model at any multipole. However, we emphasize that due todecreasing photon statistics, the
amplitude of anisotropies detectable by this analysis decreases with increasing energy, hence the
measurements at higher energies currently do not exclude the presence of anisotropies at those
energies at the level detected at 1 - 10 GeV.

Prior theoretical work on anisotropies in the IGRB has generated predictions for the fluctuation
angular power spectra of many potential contributors to themeasured IGRB emission. Although the
predictions for a given source class can vary by orders of magnitude depending on the assumptions
made, some representative values ofCℓ at ℓ = 100 include∼ 10−4 sr for blazars [13],∼ 10−7 sr
for star-forming galaxies [17], and between∼ 10−4 sr and∼ 0.1 sr for dark matter annihilation
in Galactic subhalos [16]. In the energy range of 1 - 5 GeV, formultipolesℓ & 100, the value
Cℓ ≃ 10−5 sr measured in this analysis falls generally in the range predicted for some astrophysical
source classes and some dark matter scenarios for the angular power spectrum of the emission
from a single source class. This result suggests that angular power spectrum measurements using
Fermi-LAT data may provide a sensitive probe of anisotropy signatures from known and proposed
gamma-ray source classes.
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Figure 1: Angular power spectra ofFermi-LAT data and a simulated model in several energy bins. Angular
power spectra are shown with the photon noise levelCN subtracted, and have been corrected for the power
suppression due to the beam and pixel window functionsWℓ. In the top three rows, the right panel shows the
same result as the left panel, i.e., the angular power spectra for the same energy bin, but over a smaller range
of Cℓ to more clearly illustrate the result at multipolesℓ& 100.
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